Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Trials Regul ; 4(2): 41-55, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36643025

RESUMO

Neurotrauma, often defined as abrupt damage to the brain or spinal cord, is a substantial cause of mortality and morbidity that is widely recognized. As such, establishing an effective course of action is crucial to the enhancement of neurotrauma guidelines and patient outcomes in healthcare worldwide. Following the onset of neurotraumatic injuries, time is perhaps the most critical facet in diminishing mortality and morbidity rates. Thus, procuring the airway should be of utmost priority in a patient to allow for optimal ventilation, with a shift in focus resorting to surgical interventions after the patient reaches a suitable care facility. In particular, ventriculoperitoneal shunt (VPS) procedures have long been utilized to treat traumatic brain and spinal cord injuries to direct additional cerebrospinal fluid (CSF) from the lateral ventricles through a ventricular catheter attached to a valve that is further connected to a distal catheter. Decompressive cranio omie (DCs), cranioplasties, and intracranial pressure measurements (ICP) are also frequently performed in combination with VPS to manage intracranial hypertension and cerebral edema. Although the current surgical methods utilized in the treatment of neurotrauma prove to be highly efficacious in the prevention of adverse outcomes, emergent therapies are growing in popularity. Of interest, the Three Pillars Expansive Craniotomy, cisternostomy, and external lumbar drainages are cutting-edge procedures with promising results that can potentially usher change in the neurosurgical industry but require additional examination.

2.
Front Neurol ; 12: 700026, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512517

RESUMO

Transcranial magnetic stimulation (TMS) is a painless, non-invasive, and established brain stimulation technique to investigate human brain function. Over the last three decades, TMS has shed insight into the pathophysiology of many neurological disorders. Tremor is an involuntary, rhythmic oscillatory movement disorder commonly related to pathological oscillations propagated via the cerebello-thalamo-cortical pathway. Although tremor is the most common movement disorder and recent imaging studies have enhanced our understanding of the critical pathogenic networks, the underlying pathophysiology of different tremor syndromes is complex and still not fully understood. TMS has been used as a tool to further our understanding of tremor pathophysiology. In addition, repetitive TMS (rTMS) that can modulate brain functions through plasticity effects has been targeted to the tremor network to gain potential therapeutic benefits. However, evidence is available for only a few studies that included small patient samples with limited clinical follow-up. This review aims to discuss the role of TMS in advancing the pathophysiological understanding as well as emerging applications of rTMS for treating individual tremor syndromes. The review will focus on essential tremor, Parkinson's disease tremor, dystonic tremor syndrome, orthostatic tremor, and functional tremor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA