Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(8): e2217150120, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36791101

RESUMO

We have structurally characterized the liquid crystal (LC) phase that can appear as an intermediate state when a dielectric nematic, having polar disorder of its molecular dipoles, transitions to the almost perfectly polar-ordered ferroelectric nematic. This intermediate phase, which fills a 100-y-old void in the taxonomy of smectic LCs and which we term the "smectic ZA," is antiferroelectric, with the nematic director and polarization oriented parallel to smectic layer planes, and the polarization alternating in sign from layer to layer with a 180 Å period. A Landau free energy, originally derived from the Ising model of ferromagnetic ordering of spins in the presence of dipole-dipole interactions, and applied to model incommensurate antiferroelectricity in crystals, describes the key features of the nematic-SmZA-ferroelectric nematic phase sequence.

2.
Proc Natl Acad Sci U S A ; 119(47): e2210062119, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375062

RESUMO

We report the observation of the smectic AF, a liquid crystal phase of the ferroelectric nematic realm. The smectic AF is a phase of small polar, rod-shaped molecules that form two-dimensional fluid layers spaced by approximately the mean molecular length. The phase is uniaxial, with the molecular director, the local average long-axis orientation, normal to the layer planes, and ferroelectric, with a spontaneous electric polarization parallel to the director. Polarization measurements indicate almost complete polar ordering of the ∼10 Debye longitudinal molecular dipoles, and hysteretic polarization reversal with a coercive field ∼2 × 105 V/m is observed. The SmAF phase appears upon cooling in two binary mixtures of partially fluorinated mesogens: 2N/DIO, exhibiting a nematic (N)-smectic ZA (SmZA)-ferroelectric nematic (NF)-SmAF phase sequence, and 7N/DIO, exhibiting an N-SmZA-SmAF phase sequence. The latter presents an opportunity to study a transition between two smectic phases having orthogonal systems of layers.

3.
Proc Natl Acad Sci U S A ; 118(22)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34050028

RESUMO

We show that surface interactions can vectorially structure the three-dimensional polarization field of a ferroelectric fluid. The contact between a ferroelectric nematic liquid crystal and a surface with in-plane polarity generates a preferred in-plane orientation of the polarization field at that interface. This is a route to the formation of fluid or glassy monodomains of high polarization without the need for electric field poling. For example, unidirectional buffing of polyimide films on planar surfaces to give quadrupolar in-plane anisotropy also induces macroscopic in-plane polar order at the surfaces, enabling the formation of a variety of azimuthal polar director structures in the cell interior, including uniform and twisted states. In a π-twist cell, obtained with antiparallel, unidirectional buffing on opposing surfaces, we demonstrate three distinct modes of ferroelectric nematic electro-optic response: intrinsic, viscosity-limited, field-induced molecular reorientation; field-induced motion of domain walls separating twisted states of opposite chirality; and propagation of polarization reorientation solitons from the cell plates to the cell center upon field reversal. Chirally doped ferroelectric nematics in antiparallel-rubbed cells produce Grandjean textures of helical twist that can be unwound via field-induced polar surface reorientation transitions. Fields required are in the 3-V/mm range, indicating an in-plane polar anchoring energy of w P ∼3 × 10-3 J/m2.

4.
Proc Natl Acad Sci U S A ; 117(25): 14021-14031, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32522878

RESUMO

We report the experimental determination of the structure and response to applied electric field of the lower-temperature nematic phase of the previously reported calamitic compound 4-[(4-nitrophenoxy)carbonyl]phenyl2,4-dimethoxybenzoate (RM734). We exploit its electro-optics to visualize the appearance, in the absence of applied field, of a permanent electric polarization density, manifested as a spontaneously broken symmetry in distinct domains of opposite polar orientation. Polarization reversal is mediated by field-induced domain wall movement, making this phase ferroelectric, a 3D uniaxial nematic having a spontaneous, reorientable polarization locally parallel to the director. This polarization density saturates at a low temperature value of ∼6 µC/cm2, the largest ever measured for a fluid or glassy material. This polarization is comparable to that of solid state ferroelectrics and is close to the average value obtained by assuming perfect, polar alignment of molecular dipoles in the nematic. We find a host of spectacular optical and hydrodynamic effects driven by ultralow applied field (E ∼ 1 V/cm), produced by the coupling of the large polarization to nematic birefringence and flow. Electrostatic self-interaction of the polarization charge renders the transition from the nematic phase mean field-like and weakly first order and controls the director field structure of the ferroelectric phase. Atomistic molecular dynamics simulation reveals short-range polar molecular interactions that favor ferroelectric ordering, including a tendency for head-to-tail association into polar, chain-like assemblies having polar lateral correlations. These results indicate a significant potential for transformative, new nematic physics, chemistry, and applications based on the enhanced understanding, development, and exploitation of molecular electrostatic interaction.

5.
Nano Lett ; 22(11): 4569-4575, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35584547

RESUMO

Here, we report the relationship between helical pitch of the helical nanofilament (HNF) phase formed by bent-core molecule NOBOW and the concentration of achiral dopants 5CB and octane, using linearly polarized resonant soft X-ray scattering (RSoXS). Utilizing theory-based simulation, which fits well with the experiments, the molecular helices in the filament were probed and the superstructure of helical 5CB directed by groove of HNFs was observed. Quantitative pitch determination with RSoXS reveals that helical pitch variation is related to 5CB concentration with no temperature dependence. Doping rodlike immiscible 5CB led to a pitch shortening of up to 30%, which was attributed to a change in interfacial tension. By shedding light not only on phase behavior of binary systems but also enabling control over pitch length, our work may benefit various applications of HNF-containing binary systems, including optical rotation devices, circularly polarized light emitters, and chirality transfer agents.


Assuntos
Cristais Líquidos , Simulação por Computador , Cristais Líquidos/química , Temperatura
6.
Soft Matter ; 18(27): 5126, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35775389

RESUMO

Correction for 'Surface alignment of ferroelectric nematic liquid crystals' by Federico Caimi et al., Soft Matter, 2021, 17, 8130-8139, https://doi.org/10.1039/D1SM00734C.

7.
Proc Natl Acad Sci U S A ; 116(22): 10698-10704, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31088967

RESUMO

We synthesized the liquid crystal dimer and trimer members of a series of flexible linear oligomers and characterized their microscopic and nanoscopic properties using resonant soft X-ray scattering and a number of other experimental techniques. On the microscopic scale, the twist-bend phases of the dimer and trimer appear essentially identical. However, while the liquid crystal dimer exhibits a temperature-dependent variation of its twist-bend helical pitch varying from 100 to 170 Å on heating, the trimer exhibits an essentially temperature-independent pitch of 66 Å, significantly shorter than those reported for other twist-bend forming materials in the literature. We attribute this to a specific combination of intrinsic conformational bend of the trimer molecules and a sterically favorable intercalation of the trimers over a commensurate fraction (two-thirds) of the molecular length. We develop a geometric model of the twist-bend phase for these materials with the molecules arranging into helical chain structures, and we fully determine their respective geometric parameters.

8.
Soft Matter ; 17(35): 8130-8139, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525165

RESUMO

The success of nematic liquid crystals in displays and optical applications is due to the combination of their optical uniaxiality, fluidity, elasticity, responsiveness to electric fields and controllable coupling of the molecular orientation at the interface with solid surfaces. The discovery of a polar nematic phase opens new possibilities for liquid crystal-based applications, but also requires a new study of how this phase couples with surfaces. Here we explore the surface alignment of the ferroelectric nematic phase by testing different rubbed and unrubbed substrates that differ in coupling strength and anchoring orientation and find a variety of behaviors - in terms of nematic orientation, topological defects and electric field response - that are specific to the ferroelectric nematic phase and can be understood as a consequence of the polar symmetry breaking. In particular, we show that by using rubbed polymer surfaces it is easy to produce cells with a planar polar preferential alignment and that cell electrostatics (e.g. grounding the electrodes) has a remarkable effect on the overall homogeneity of the ferroelectric ordering.

9.
Phys Rev Lett ; 122(10): 107801, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932628

RESUMO

An achiral, bent-core mesogen forms several tilted smectic liquid crystal phases, including a nonpolar, achiral de Vries smectic A which transitions to a chiral, ferroelectric state in applied electric fields above a threshold. At lower temperature, a chiral, ferrielectric phase with a periodic, supermolecular modulation of the tilt azimuth, indicated by a Bragg peak in carbon-edge resonant soft x-ray scattering, is observed. The absence of a corresponding resonant umklapp peak identifies the superlayer structure as a twist-bend-like helix that is only weakly modulated by the smectic layering.

10.
Chemistry ; 25(31): 7438-7442, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-30957281

RESUMO

The helical nanofilament (HNF) and low-temperature dark conglomerate (DC) liquid-crystal (LC) phases of bent-core molecules show the same local layer structure but present different bulk morphologies. The DC phase is characterized by the formation of nanoscale toric focal conics, whereas the HNF phase is constructed of bundles of twisted layers. Although the local layer structure is similar in both phases, materials that form these phases tend to form one morphology in preference to the other. Targeted control of the nanostructures would provide pathways to potential applications and insight into how conditions drive a specific phase formation. Here, W624, a compound known to form the DC phase is confined in nanometer scale channels of porous anodized aluminum oxide (AAO) membranes. Within each nanochannel, the DC phase is suppressed forming the HNF structure instead, indicating the nanoscale spatial limitation can control the phase structure of the DC phase.

11.
J Am Chem Soc ; 140(42): 13623-13627, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30293432

RESUMO

The dynamic manipulation of the properties of soft matter can lead to adaptive functional materials that can be used in advanced applications. Here we report on a new chiral dopant, built on an isosorbide scaffold attached to two bistable hydrazone-based light switches that can be used to control the self-assembly, and hence photophysical properties, of nematic liquid crystals (LCs). The bistability of the switch allows kinetic trapping of various helical assemblies as a function of the photostationary states, resulting in the reflection of different wavelengths of light. Surprisingly, doping 5CB with the chiral switch, followed by irradiation with blue light, triggers an isothermal phase change from the helical cholesteric phase to the untwisted lamellar smectic A* phase. This transition was used to modulate the transparency of a LC film, resulting in a light-gated optical window.

12.
Proc Natl Acad Sci U S A ; 111(40): 14342-7, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25246585

RESUMO

A series of simple hierarchical self-assembly steps achieve self-organization from the centimeter to the subnanometer-length scales in the form of square-centimeter arrays of linear nanopores, each one having a single chiral helical nanofilament of large internal surface area and interfacial interactions based on chiral crystalline molecular arrangements.

13.
Phys Rev Lett ; 116(14): 147803, 2016 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-27104729

RESUMO

Resonant x-ray scattering shows that the bulk structure of the twist-bend liquid crystal phase, recently discovered in bent molecular dimers, has spatial periodicity without electron density modulation, indicating a lattice-free heliconical nematic precession of orientation that has helical glide symmetry. In situ study of the bulk helix texture of the dimer CB7CB shows an elastically confined temperature-dependent minimum helix pitch, but a remarkable elastic softness of pitch in response to dilative stresses. Scattering from the helix is not detectable in the higher temperature nematic phase.

14.
Proc Natl Acad Sci U S A ; 110(40): 15931-6, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24006362

RESUMO

Freeze-fracture transmission electron microscopy study of the nanoscale structure of the so-called "twist-bend" nematic phase of the cyanobiphenyl (CB) dimer molecule CB(CH2)7CB reveals stripe-textured fracture planes that indicate fluid layers periodically arrayed in the bulk with a spacing of d ~ 8.3 nm. Fluidity and a rigorously maintained spacing result in long-range-ordered 3D focal conic domains. Absence of a lamellar X-ray reflection at wavevector q ~ 2π/d or its harmonics in synchrotron-based scattering experiments indicates that this periodic structure is achieved with no detectable associated modulation of the electron density, and thus has nematic rather than smectic molecular ordering. A search for periodic ordering with d ~ in CB(CH2)7CB using atomistic molecular dynamic computer simulation yields an equilibrium heliconical ground state, exhibiting nematic twist and bend, of the sort first proposed by Meyer, and envisioned in systems of bent molecules by Dozov and Memmer. We measure the director cone angle to be θ(TB) ~ 25° and the full pitch of the director helix to be p(TB) ~ 8.3 nm, a very small value indicating the strong coupling of molecular bend to director bend.


Assuntos
Cristais Líquidos/química , Modelos Moleculares , Conformação Molecular , Nanoestruturas/química , Dimerização , Técnica de Fratura por Congelamento , Microscopia Eletrônica de Transmissão , Estrutura Molecular
15.
Langmuir ; 31(29): 8156-61, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26135637

RESUMO

We have investigated the various morphological changes of helical nanofilament (HNF; B4) phases in multiscale nanochannels made of porous anodic aluminum oxide (AAO) film. Single or multihelical structures could be manipulated depending on the AAO pore size and the higher-temperature phase of each molecule. Furthermore, the nanostructures of HNFs affected by the chemical affinity between the molecule and surface were drastically controlled in surface-modified nanochannels. These well-controlled hierarchical helical structures that have multidimensions can be a promising tool for the manipulation of chiral pores or the nonlinear optical applications.

16.
Soft Matter ; 11(39): 7778-82, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26313738

RESUMO

The B4 helical nanofilament (HNF) liquid crystal (LC) phase is a three-dimensional (3D) helical structure composed of 2D smectic layers. Because of the complex shape of the HNF phase, it is difficult to understand the generation mechanism of HNFs in the bulk as well as in the thin-film condition. Here, we directly investigated the nucleation and growth of HNFs in nanobowls. A combination of electron microscopy and X-ray diffraction was used to reveal the transitional surface structures, in which barrel-like structures as well as short HNFs with random handedness were observed, depending on the LC film thickness. These results will be useful in achieving a better understanding of thin film structures of complex chiral structures in soft matter.

17.
J Phys Chem A ; 119(17): 4009-16, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25793313

RESUMO

A combination of molecular quantum electrodynamics, perturbation theory, and ab initio calculations was used to create a computational methodology capable of estimating the rate of three-body singlet upconversion in organic molecular assemblies. The approach was applied to quantify the conditions under which such relaxation rates, known as energy pooling, become meaningful for two test systems, stilbene-fluorescein and hexabenzocoronene-oligothiophene. Both exhibit low intramolecular conversion, but intermolecular configurations exist in which pooling efficiency is at least 90% when placed in competition with more conventional relaxation pathways. For stilbene-fluorescein, the results are consistent with data generated in an earlier experimental investigation. Exercising these model systems facilitated the development of a set of design rules for the optimization of energy pooling.

18.
J Chem Phys ; 143(14): 144505, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26472387

RESUMO

Using atomistic molecular dynamics simulation, we study the discotic columnar liquid crystalline (LC) phases formed by a new organic compound having hexa-peri-Hexabenzocoronene (HBC) core with six pendant oligothiophene units recently synthesized by Nan Hu et al. [Adv. Mater. 26, 2066 (2014)]. This HBC core based LC phase was shown to have electric field responsive behavior and has important applications in organic electronics. Our simulation results confirm the hexagonal arrangement of columnar LC phase with a lattice spacing consistent with that obtained from small angle X-ray diffraction data. We have also calculated various positional and orientational correlation functions to characterize the ordering of the molecules in the columnar arrangement. The molecules in a column are arranged with an average twist of 25° having an average inter-molecular separation of ∼5 Å. Interestingly, we find an overall tilt angle of 43° between the columnar axis and HBC core. We also simulate the charge transport through this columnar phase and report the numerical value of charge carrier mobility for this liquid crystal phase. The charge carrier mobility is strongly influenced by the twist angle and average spacing of the molecules in the column.

19.
Proc Natl Acad Sci U S A ; 109(4): 1110-5, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22233803

RESUMO

In biological systems and nanoscale assemblies, the self-association of DNA is typically studied and applied in the context of the evolved or directed design of base sequences that give complementary pairing, duplex formation, and specific structural motifs. Here we consider the collective behavior of DNA solutions in the distinctly different regime where DNA base sequences are chosen at random or with varying degrees of randomness. We show that in solutions of completely random sequences, corresponding to a remarkably large number of different molecules, e.g., approximately 10(12) for random 20-mers, complementary still emerges and, for a narrow range of oligomer lengths, produces a subtle hierarchical sequence of structured self-assembly and organization into liquid crystal (LC) phases. This ordering follows from the kinetic arrest of oligomer association into long-lived partially paired double helices, followed by reversible association of these pairs into linear aggregates that in turn condense into LC domains.


Assuntos
DNA/química , Cristais Líquidos/química , Conformação de Ácido Nucleico , Sequência de Bases , Cinética , Dados de Sequência Molecular , Oligonucleotídeos/genética
20.
Chemphyschem ; 15(7): 1502-7, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24376194

RESUMO

Smectic layers of tilted, bent-core liquid crystals have a tendency to exhibit spontaneous saddle-splay curvature, a mechanical response that relieves the internal strain of the layers. When this tendency is strong enough, the smectic layers form complex, equilibrium, non-planar structures such as the helical nanofilaments in the B4 phase and the disordered focal conics in the chiral dark conglomerate (DC) phase. The DC phase is usually observed on cooling directly from the isotropic phase, with the disordered focal conics analogous to the disordered sponge phase found in lyotropic systems. We report a DC phase observed below a B2 phase that is stable down to room temperature. In mixtures with the calamitic liquid crystal 8CB, the low-temperature DC phase forms a more ordered, bicontinuous structure, resembling the cubic phase observed in the lyotropic systems, which is attributed to the enhanced intralayer ordering of the bent-core molecules in the mixtures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA