Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 506(7487): 204-7, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24476818

RESUMO

Error correction is important in classical and quantum computation. Decoherence caused by the inevitable interaction of quantum bits with their environment leads to dephasing or even relaxation. Correction of the concomitant errors is therefore a fundamental requirement for scalable quantum computation. Although algorithms for error correction have been known for some time, experimental realizations are scarce. Here we show quantum error correction in a heterogeneous, solid-state spin system. We demonstrate that joint initialization, projective readout and fast local and non-local gate operations can all be achieved in diamond spin systems, even under ambient conditions. High-fidelity initialization of a whole spin register (99 per cent) and single-shot readout of multiple individual nuclear spins are achieved by using the ancillary electron spin of a nitrogen-vacancy defect. Implementation of a novel non-local gate generic to our electron-nuclear quantum register allows the preparation of entangled states of three nuclear spins, with fidelities exceeding 85 per cent. With these techniques, we demonstrate three-qubit phase-flip error correction. Using optimal control, all of the above operations achieve fidelities approaching those needed for fault-tolerant quantum operation, thus paving the way to large-scale quantum computation. Besides their use with diamond spin systems, our techniques can be used to improve scaling of quantum networks relying on phosphorus in silicon, quantum dots, silicon carbide or rare-earth ions in solids.

2.
Nano Lett ; 13(6): 2738-42, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23721106

RESUMO

Measuring local temperature with a spatial resolution on the order of a few nanometers has a wide range of applications in the semiconductor industry and in material and life sciences. For example, probing temperature on the nanoscale with high precision can potentially be used to detect small, local temperature changes like those caused by chemical reactions or biochemical processes. However, precise nanoscale temperature measurements have not been realized so far owing to the lack of adequate probes. Here we experimentally demonstrate a novel nanoscale temperature sensing technique based on optically detected electron spin resonance in single atomic defects in diamonds. These diamond sensor sizes range from a micrometer down to a few tens of nanometers. We achieve a temperature noise floor of 5 mK/Hz(1/2) for single defects in bulk sensors. Using doped nanodiamonds as sensors the temperature noise floor is 130 mK/Hz(1/2) and accuracies down to 1 mK for nanocrystal sizes and therefore length scales of a few tens of nanometers. This combination of precision and position resolution, combined with the outstanding sensor photostability, should allow the measurement of the heat produced by chemical interactions involving a few or single molecules even in heterogeneous environments like cells.

3.
Phys Rev Lett ; 107(9): 090401, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21929214

RESUMO

Quantum nonlocality has been experimentally investigated by testing different forms of Bell's inequality, yet a loophole-free realization has not been achieved up to now. Much less explored are temporal Bell inequalities, which are not subject to the locality assumption, but impose a constraint on the system's time correlations. In this Letter, we report on the experimental violation of a temporal Bell's inequality using a nitrogen-vacancy (NV) defect in diamond and provide a novel quantitative test of quantum coherence. Such a test requires strong control over the system, and we present a new technique to initialize the electronic state of the NV with high fidelity, a necessary requirement also for reliable quantum information processing and/or the implementation of protocols for quantum metrology.

4.
Phys Rev Lett ; 106(15): 157601, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21568615

RESUMO

The nitrogen-vacancy (NV) center in diamond is supposed to be a building block for quantum computing and nanometer-scale metrology at ambient conditions. Therefore, precise knowledge of its quantum states is crucial. Here, we experimentally show that under usual operating conditions the NV exists in an equilibrium of two charge states [70% in the expected negative (NV-) and 30% in the neutral one (NV0)]. Projective quantum nondemolition measurement of the nitrogen nuclear spin enables the detection even of the additional, optically inactive state. The nuclear spin can be coherently driven also in NV0 (T1≈90 ms and T2≈6 µs).

5.
Nat Nanotechnol ; 7(2): 105-8, 2011 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-22179568

RESUMO

Sensors based on the nitrogen-vacancy defect in diamond are being developed to measure weak magnetic and electric fields at the nanoscale. However, such sensors rely on measurements of a shift in the Lamor frequency of the defect, so an accumulation of quantum phase causes the measurement signal to exhibit a periodic modulation. This means that the measurement time is either restricted to half of one oscillation period, which limits accuracy, or that the magnetic field range must be known in advance. Moreover, the precision increases only slowly (as T(-0.5)) with measurement time T (ref. 3). Here, we implement a quantum phase estimation algorithm on a single nuclear spin in diamond to combine both high sensitivity and high dynamic range. By achieving a scaling of the precision with time to T(-0.85), we improve the sensitivity by a factor of 7.4 for an accessible field range of 16 mT, or, alternatively, we improve the dynamic range by a factor of 130 for a sensitivity of 2.5 µT Hz(-1/2). Quantum phase estimation algorithms have also recently been implemented using a single electron spin in a nitrogen-vacancy centre. These methods are applicable to a variety of field detection schemes, and do not require quantum entanglement.


Assuntos
Diamante/química , Magnetometria , Nanoestruturas/química , Algoritmos , Carbono/química , Campos Eletromagnéticos , Espectroscopia de Ressonância de Spin Eletrônica , Nitrogênio/química , Pontos Quânticos
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(6 Pt 1): 061122, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20866393

RESUMO

Closed weakly bound bipartite quantum systems typically exhibit relaxation behavior with respect to the smaller subsystem. Here, we investigate a model composed of a finite spin network with one interfacing spin being coupled to a single electromagnetic field mode via the Jaynes-Cummings interaction. The initial pure state of the system can be chosen such that the resulting thermodynamical relaxation process is lasing/nonlasing relaxation or energy back flow from the field mode. We examine the properties of the field mode with quantum optical methods. During the lasing process, the field mode is in a phase-diffused Glauber state with no optical coherence. The thermodynamical analysis of our system is consistent with this finding: The total energy exchanged between both subsystems is found to be heat only. Yet the mapping of this function onto a thermodynamic heat engine appears to be of limited value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA