Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
New Phytol ; 229(1): 272-283, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32171020

RESUMO

Structural changes during severe drought stress greatly modify the hydraulic properties of fine roots. Yet, the physiological basis behind the restoration of fine root water uptake capacity during water recovery remains unknown. Using neutron radiography (NR), X-ray micro-computed tomography (micro-CT), fluorescence microscopy, and fine root hydraulic conductivity measurements (Lpr ), we examined how drought-induced changes in anatomy and hydraulic properties of contrasting grapevine rootstocks are coupled with fine root growth dynamics during drought and return of soil moisture. Lacunae formation in drought-stressed fine roots was associated with a significant decrease in fine root Lpr for both rootstocks. However, lacunae formation occurred under milder stress in the drought-resistant rootstock, 110R. Suberin was deposited at an earlier developmental stage in fine roots of 101-14Mgt (i.e. drought susceptible), probably limiting cortical lacunae formation during mild stress. During recovery, we found that only 110R fine roots showed rapid re-establishment of elongation and water uptake capacity and we found that soil water status surrounding root tips differed between rootstocks as imaged with NR. These data suggest that drought resistance in grapevine rootstocks is associated with rapid re-establishment of growth and Lpr near the root tip upon re-watering by limiting competing sites along the root cylinder.


Assuntos
Secas , Vitis , Meristema , Raízes de Plantas , Água , Microtomografia por Raio-X
2.
Plant Dis ; 105(9): 2418-2425, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34494871

RESUMO

The European grapevine (Vitis vinifera L.) has been cultivated in North America for about 500 years. One of the major limitations to its culture is the powdery mildew (PM) fungus, Erysiphe necator Schw. This study reports on the most extensive screening of Vitis species from the southwestern United States and northern Mexico for resistance to PM, testing 147 accessions of 13 Vitis species. In addition, Vitis vinifera cv. Carignane, a highly susceptible wine grape cultivar, was used as a reference to evaluate the effect of the inoculum 14 days postinoculation. Inoculation was done with a vacuum-operated settling tower using a broadly virulent isolate of E. necator, the C-strain. Resistant accessions (nine), moderately susceptible accessions (39), and highly susceptible accessions (99) were detected. The resistant accessions were then inoculated with an additional fungal isolate, e1-101, and they retained their resistance. Vitis species susceptibility was not associated with a North-South gradation, but Western species were more susceptible than Midwestern and Eastern species. All five of the V. monticola accessions were susceptible, as were the accessions of V. treleasei. The species V. acerifolia, V. candicans, V. cinerea, and V. × doaniana had significantly more resistant to moderately susceptible accessions compared with V. arizonica, V. berlandieri, V. californica, V. × champinii, V. girdiana, V. riparia, and V. rupestris, which had relatively more susceptible accessions than the other species. This research identified new sources of PM resistance in Vitis from the southwestern United States that could be incorporated into PM resistance breeding programs throughout the world.


Assuntos
Ascomicetos , Vitis , Resistência à Doença , Doenças das Plantas , Sudoeste dos Estados Unidos
3.
BMC Genomics ; 20(1): 972, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830913

RESUMO

BACKGROUND: Vegetatively propagated clones accumulate somatic mutations. The purpose of this study was to better appreciate clone diversity and involved defining the nature of somatic mutations throughout the genome. Fifteen Zinfandel winegrape clone genomes were sequenced and compared to one another using a highly contiguous genome reference produced from one of the clones, Zinfandel 03. RESULTS: Though most heterozygous variants were shared, somatic mutations accumulated in individual and subsets of clones. Overall, heterozygous mutations were most frequent in intergenic space and more frequent in introns than exons. A significantly larger percentage of CpG, CHG, and CHH sites in repetitive intergenic space experienced transition mutations than in genic and non-repetitive intergenic spaces, likely because of higher levels of methylation in the region and because methylated cytosines often spontaneously deaminate. Of the minority of mutations that occurred in exons, larger proportions of these were putatively deleterious when they occurred in relatively few clones. CONCLUSIONS: These data support three major conclusions. First, repetitive intergenic space is a major driver of clone genome diversification. Second, clones accumulate putatively deleterious mutations. Third, the data suggest selection against deleterious variants in coding regions or some mechanism by which mutations are less frequent in coding than noncoding regions of the genome.


Assuntos
Mutação , Vitis/genética , Sequenciamento Completo do Genoma/métodos , Evolução Clonal , DNA Intergênico , Genoma de Planta
4.
Plant Dis ; 101(9): 1606-1615, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30677332

RESUMO

Reddish-purple coloration on the leaf blades and downward rolling of leaf margins are typical symptoms of grapevine leafroll disease (GLD) in red-fruited grapevine cultivars. These typical symptoms are attributed to the expression of genes encoding enzymes for anthocyanins synthesis, and the accumulation of flavonoids in diseased leaves. Drought has been proven to accelerate development of GLD symptoms in virus-infected leaves of grapevine. However, it is not known how drought affects GLD expression nor how anthocyanin biosynthesis in virus-infected leaves is altered. The present study used HPLC to determine the types and levels of anthocyanins, and applied reverse transcription quantitative polymerase chain reaction (RT-qPCR) to analyze the expression of genes encoding enzymes for anthocyanin synthesis. Plantlets of Grapevine leafroll-associated virus 3 (GLRaV-3)-infected Vitis vinifera 'Cabernet Sauvignon' were grown in vitro under PEG-induced drought stress. HPLC found no anthocyanin-related peaks in the healthy plantlets with or without PEG-induced stress, while 11 peaks were detected in the infected plantlets with or without PEG-induced drought stress, but the peaks were significantly higher in infected drought-stressed plantlets. Increased accumulation of total anthocyanin compounds was related to the development of GLD symptoms in the infected plantlets under PEG stress. The highest level of up-regulated gene expression was found in GLRaV-3-infected leaves with PEG-induced drought stress. Analyses of variance and correlation of anthocyanin accumulation with related gene expression levels found that GLRaV-3-infection was the key factor in increased anthocyanin accumulation. This accumulation involved the up-regulation of two key genes, MYBA1 and UFGT, and their expression levels were further enhanced by drought stress.


Assuntos
Antocianinas , Closteroviridae , Folhas de Planta , Regulação para Cima , Vitis , Antocianinas/genética , Closteroviridae/fisiologia , Secas , Folhas de Planta/virologia , Estresse Fisiológico/genética , Vitis/virologia
5.
BMC Plant Biol ; 16(1): 170, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27473850

RESUMO

BACKGROUND: Grapevine powdery mildew Erysiphe necator is a major fungal disease in all grape growing countries worldwide. Breeding for resistance to this disease is crucial to avoid extensive fungicide applications that are costly, labor intensive and may have detrimental effects on the environment. In the past decade, Chinese Vitis species have attracted attention from grape breeders because of their strong resistance to powdery mildew and their lack of negative fruit quality attributes that are often present in resistant North American species. In this study, we investigated powdery mildew resistance in multiple accessions of the Chinese species Vitis piasezkii that were collected during the 1980 Sino-American botanical expedition to the western Hubei province of China. RESULTS: A framework genetic map was developed using simple sequence repeat markers in 277 seedlings of an F1 mapping population arising from a cross of the powdery mildew susceptible Vitis vinifera selection F2-35 and a resistant accession of V. piasezkii DVIT2027. Quantitative trait locus analyses identified two major powdery mildew resistance loci on chromosome 9 (Ren6) and chromosome 19 (Ren7) explaining 74.8 % of the cumulative phenotypic variation. The quantitative trait locus analysis for each locus, in the absence of the other, explained 95.4 % phenotypic variation for Ren6, while Ren7 accounted for 71.9 % of the phenotypic variation. Screening of an additional 259 seedlings of the F1 population and 910 seedlings from four pseudo-backcross populations with SSR markers defined regions of 22 kb and 330 kb for Ren6 and Ren7 in the V. vinifera PN40024 (12X) genome sequence, respectively. Both R loci operate post-penetration through the induction of programmed cell death, but vary significantly in the speed of response and degree of resistance; Ren6 confers complete resistance whereas Ren7 confers partial resistance to the disease with reduced colony size. A comparison of the kinetics of induction of powdery mildew resistance mediated by Ren6, Ren7 and the Run1 locus from Muscadinia rotundifolia, indicated that the speed and strength of resistance conferred by Ren6 is greater than that of Run1 which, in turn, is superior to that conferred by Ren7. CONCLUSIONS: This is the first report of mapping powdery mildew resistance in the Chinese species V. piasezkii. Two distinct powdery mildew R loci designated Ren6 and Ren7 were found in multiple accessions of this Chinese grape species. Their location on different chromosomes to previously reported powdery mildew resistance R loci offers the potential for grape breeders to combine these R genes with existing powdery mildew R loci to produce grape germplasm with more durable resistance against this rapidly evolving fungal pathogen.


Assuntos
Ascomicetos/fisiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Vitis/genética , China , Mapeamento Cromossômico , Resistência à Doença , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/imunologia , Locos de Características Quantitativas , Vitis/imunologia
6.
Phytopathology ; 105(8): 1104-13, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26039639

RESUMO

The Toll/interleukin-1 receptor nucleotide-binding site leucine-rich repeat gene, "resistance to Uncinula necator 1" (RUN1), from Vitis rotundifolia was recently identified and confirmed to confer resistance to the grapevine powdery mildew fungus Erysiphe necator (syn. U. necator) in transgenic V. vinifera cultivars. However, sporulating powdery mildew colonies and cleistothecia of the heterothallic pathogen have been found on introgression lines containing the RUN1 locus growing in New York (NY). Two E. necator isolates collected from RUN1 vines were designated NY1-131 and NY1-137 and were used in this study to inform a strategy for durable RUN1 deployment. In order to achieve this, fitness parameters of NY1-131 and NY1-137 were quantified relative to powdery mildew isolates collected from V. rotundifolia and V. vinifera on vines containing alleles of the powdery mildew resistance genes RUN1, RUN2, or REN2. The results clearly demonstrate the race specificity of RUN1, RUN2, and REN2 resistance alleles, all of which exhibit programmed cell death (PCD)-mediated resistance. The NY1 isolates investigated were found to have an intermediate virulence on RUN1 vines, although this may be allele specific, while the Musc4 isolate collected from V. rotundifolia was virulent on all RUN1 vines. Another powdery mildew resistance locus, RUN2, was previously mapped in different V. rotundifolia genotypes, and two alleles (RUN2.1 and RUN2.2) were identified. The RUN2.1 allele was found to provide PCD-mediated resistance to both an NY1 isolate and Musc4. Importantly, REN2 vines were resistant to the NY1 isolates and RUN1REN2 vines combining both genes displayed additional resistance. Based on these results, RUN1-mediated resistance in grapevine may be enhanced by pyramiding with RUN2.1 or REN2; however, naturally occurring isolates in North America display some virulence on vines with these resistance genes. The characterization of additional resistance sources is needed to identify resistance gene combinations that will further enhance durability. For the resistance gene combinations currently available, we recommend using complementary management strategies, including fungicide application, to reduce populations of virulent isolates.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/genética , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/genética , Vitis/genética , Alelos , Biomarcadores , Cruzamento , Genótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Locos de Características Quantitativas/genética , Especificidade da Espécie , Vitis/imunologia , Vitis/microbiologia
7.
BMC Genomics ; 15: 1081, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25487071

RESUMO

BACKGROUND: Powdery mildew, caused by the obligate biotrophic fungus Erysiphe necator, is an economically important disease of grapevines worldwide. Large quantities of fungicides are used for its control, accelerating the incidence of fungicide-resistance. Copy number variations (CNVs) are unbalanced changes in the structure of the genome that have been associated with complex traits. In addition to providing the first description of the large and highly repetitive genome of E. necator, this study describes the impact of genomic structural variation on fungicide resistance in Erysiphe necator. RESULTS: A shotgun approach was applied to sequence and assemble the genome of five E. necator isolates, and RNA-seq and comparative genomics were used to predict and annotate protein-coding genes. Our results show that the E. necator genome is exceptionally large and repetitive and suggest that transposable elements are responsible for genome expansion. Frequent structural variations were found between isolates and included copy number variation in EnCYP51, the target of the commonly used sterol demethylase inhibitor (DMI) fungicides. A panel of 89 additional E. necator isolates collected from diverse vineyard sites was screened for copy number variation in the EnCYP51 gene and for presence/absence of a point mutation (Y136F) known to result in higher fungicide tolerance. We show that an increase in EnCYP51 copy number is significantly more likely to be detected in isolates collected from fungicide-treated vineyards. Increased EnCYP51 copy numbers were detected with the Y136F allele, suggesting that an increase in copy number becomes advantageous only after the fungicide-tolerant allele is acquired. We also show that EnCYP51 copy number influences expression in a gene-dose dependent manner and correlates with fungal growth in the presence of a DMI fungicide. CONCLUSIONS: Taken together our results show that CNV can be adaptive in the development of resistance to fungicides by providing increasing quantitative protection in a gene-dosage dependent manner. The results of this work not only demonstrate the effectiveness of using genomics to dissect complex traits in organisms with very limited molecular information, but also may have broader implications for understanding genomic dynamics in response to strong selective pressure in other pathogens with similar genome architectures.


Assuntos
Ascomicetos/genética , Variações do Número de Cópias de DNA , Genoma Fúngico , Genômica , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Vitis/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Biologia Computacional/métodos , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Expressão Gênica , Ordem dos Genes , Loci Gênicos , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Dados de Sequência Molecular , Fenótipo , Proteoma
8.
Plant Physiol ; 161(3): 1529-41, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23292789

RESUMO

Vascular occlusions are common structural modifications made by many plant species in response to pathogen infection. However, the functional role(s) of occlusions in host plant disease resistance/susceptibility remains controversial. This study focuses on vascular occlusions that form in stem secondary xylem of grapevines (Vitis vinifera) infected with Pierce's disease (PD) and the impact of occlusions on the hosts' water transport and the systemic spread of the causal bacterium Xylella fastidiosa in infected vines. Tyloses are the predominant type of occlusion that forms in grapevine genotypes with differing PD resistances. Tyloses form throughout PD-susceptible grapevines with over 60% of the vessels in transverse sections of all examined internodes becoming fully blocked. By contrast, tylose development was mainly limited to a few internodes close to the point of inoculation in PD-resistant grapevines, impacting only 20% or less of the vessels. The extensive vessel blockage in PD-susceptible grapevines was correlated to a greater than 90% decrease in stem hydraulic conductivity, compared with an approximately 30% reduction in the stems of PD-resistant vines. Despite the systemic spread of X. fastidiosa in PD-susceptible grapevines, the pathogen colonized only 15% or less of the vessels in any internode and occurred in relatively small numbers, amounts much too small to directly block the vessels. Therefore, we concluded that the extensive formation of vascular occlusions in PD-susceptible grapevines does not prevent the pathogen's systemic spread in them, but may significantly suppress the vines' water conduction, contributing to PD symptom development and the vines' eventual death.


Assuntos
Doenças das Plantas/microbiologia , Feixe Vascular de Plantas/microbiologia , Vitis/microbiologia , Resistência à Doença/imunologia , Corpos de Inclusão/metabolismo , Corpos de Inclusão/ultraestrutura , Doenças das Plantas/imunologia , Caules de Planta/imunologia , Caules de Planta/microbiologia , Feixe Vascular de Plantas/ultraestrutura , Vitis/imunologia , Vitis/ultraestrutura , Água , Xylella/fisiologia , Xilema/microbiologia , Xilema/ultraestrutura
9.
Plant Physiol ; 163(3): 1254-65, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24047863

RESUMO

To better understand water uptake patterns in root systems of woody perennial crops, we detailed the developmental anatomy and hydraulic physiology along the length of grapevine (Vitis berlandieri × Vitis rupestris) fine roots from the tip to secondary growth zones. Our characterization included the localization of suberized structures and aquaporin gene expression and the determination of hydraulic conductivity (Lpr) and aquaporin protein activity (via chemical inhibition) in different root zones under both osmotic and hydrostatic pressure gradients. Tissue-specific messenger RNA levels of the plasma membrane aquaporin isogenes (VvPIPs) were quantified using laser-capture microdissection and quantitative polymerase chain reaction. Our results highlight dramatic changes in structure and function along the length of grapevine fine roots. Although the root tip lacked suberization altogether, a suberized exodermis and endodermis developed in the maturation zone, which gave way to the secondary growth zone containing a multilayer suberized periderm. Longitudinally, VvPIP isogenes exhibited strong peaks of expression in the root tip that decreased precipitously along the root length in a pattern similar to Arabidopsis (Arabidopsis thaliana) roots. In the radial orientation, expression was always greatest in interior tissues (i.e. stele, endodermis, and/or vascular tissues) for all root zones. High Lpr and aquaporin protein activity were associated with peak VvPIP expression levels in the root tip. This suggests that aquaporins play a limited role in controlling water uptake in secondary growth zones, which contradicts existing theoretical predictions. Despite having significantly lower Lpr, woody roots can constitute the vast majority of the root system surface area in mature vines and thus provide for significant water uptake potential.


Assuntos
Aquaporinas/metabolismo , Raízes de Plantas/metabolismo , Vitis/metabolismo , Água/metabolismo , Aquaporinas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vitis/anatomia & histologia , Vitis/genética
10.
BMC Plant Biol ; 13: 149, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24093598

RESUMO

BACKGROUND: Cultivated grapevines, Vitis vinifera subsp. sativa, evolved from their wild relative, V. vinifera subsp. sylvestris. They were domesticated in Central Asia in the absence of the powdery mildew fungus, Erysiphe necator, which is thought to have originated in North America. However, powdery mildew resistance has previously been discovered in two Central Asian cultivars and in Chinese Vitis species. RESULTS: A set of 380 unique genotypes were evaluated with data generated from 34 simple sequence repeat (SSR) markers. The set included 306 V. vinifera cultivars, 40 accessions of V. vinifera subsp. sylvestris, and 34 accessions of Vitis species from northern Pakistan, Afghanistan and China. Based on the presence of four SSR alleles previously identified as linked to the powdery mildew resistance locus, Ren1, 10 new mildew resistant genotypes were identified in the test set: eight were V. vinifera cultivars and two were V. vinifera subsp. sylvestris based on flower and seed morphology. Sequence comparison of a 620 bp region that includes the Ren1-linked allele (143 bp) of the co-segregating SSR marker SC8-0071-014, revealed that the ten newly identified genotypes have sequences that are essentially identical to the previously identified mildew resistant V. vinifera cultivars: 'Kishmish vatkana' and 'Karadzhandal'. Kinship analysis determined that three of the newly identified powdery mildew resistant accessions had a relationship with 'Kishmish vatkana' and 'Karadzhandal', and that six were not related to any other accession in this study set. Clustering procedures assigned accessions into three groups: 1) Chinese species; 2) a mixed group of cultivated and wild V. vinifera; and 3) table grape cultivars, including nine of the powdery mildew resistant accessions. Gene flow was detected among the groups. CONCLUSIONS: This study provides evidence that powdery mildew resistance is present in V. vinifera subsp. sylvestris, the dioecious wild progenitor of the cultivated grape. Four first-degree parent progeny relationships were discovered among the hermaphroditic powdery mildew resistant cultivars, supporting the existence of intentional grape breeding efforts. Although several Chinese grape species are resistant to powdery mildew, no direct genetic link to the resistance found in V. vinifera could be established.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/fisiologia , Doenças das Plantas/microbiologia , Vitis/microbiologia , Vitis/fisiologia , Resistência à Doença/genética , Genótipo , Doenças das Plantas/genética , Vitis/genética
11.
Front Plant Sci ; 13: 1096862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36600930

RESUMO

Multiple grape powdery mildew (PM) genetic resistance (R) loci have been found in wild grape species. Little is known about the defense responses associated with each R locus. In this study, we compare the defense mechanisms associated with PM resistance in interspecific crosses segregating for a single R locus from Muscadinia rotundifolia (Run1, Run1.2b, Run2.1, Run2.2), Vitis cinerea (Ren2), V. romanetii (Ren4D and Ren4U), and the interspecific hybrid Villard blanc (Ren3). By combining optical microscopy, visual scoring, and biomass estimation, we show that the eight R loci confer resistance by limiting infection at different stages. We assessed the defense mechanisms triggered in response to PM at 1 and 5 days post-inoculation (dpi) via RNA sequencing. To account for the genetic differences between species, we developed for each accession a diploid synthetic reference transcriptome by incorporating into the PN40024 reference homozygous and heterozygous sequence variants and de novo assembled transcripts. Most of the R loci exhibited a higher number of differentially expressed genes (DEGs) associated with PM resistance at 1 dpi compared to 5 dpi, suggesting that PM resistance is mostly associated with an early transcriptional reprogramming. Comparison of the PM resistance-associated DEGs showed a limited overlap between pairs of R loci, and nearly half of the DEGs were specific to a single R locus. The largest overlap of PM resistance-associated DEGs was found between Ren3 +, Ren4D +, and Ren4U + genotypes at 1 dpi, and between Ren4U + and Run1 + accessions at 5 dpi. The Ren3 +, Ren4D +, and Ren4U + were also found to have the highest number of R locus-specific DEGs in response to PM. Both shared and R locus-specific DEGs included genes from different defense-related categories, indicating that the presence of E. necator triggered distinct transcriptional responses in the eight R loci.

12.
J Econ Entomol ; 114(5): 1991-2008, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34494096

RESUMO

The glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae: Cicadellinae), is an introduced vector of the xylem-dwelling bacterium Xylella fastidiosa Wells et al. (Xanthomonadales: Xanthomonadaceae) in California. Once acquired, X. fastidiosa colonizes the functional foregut of the vector. Bacteria can be inoculated directly into grapevine xylem during the xylem cell acceptance process in sharpshooter stylet probing, represented by the X wave using electropenetrography (EPG). Since 2001, an effort has been underway to develop PD-resistant grapevines, Vitis vinifera L., through classical breeding of various species of resistant wild grapevines with more susceptible V. vinifera. The present study used EPG to compare H. vitripennis stylet probing behaviors in a factorial experiment between V. champinii (a V. candicans/V. rupestris natural hybrid with moderate trichomes) and V. vinifera cv. 'Chardonnay' (which lacks trichomes) that had been gently scraped to remove trichomes or was not scraped. Results showed that sharpshooters performed significantly more X waves/X. fastidiosa inoculation behaviors of overall longer duration on Chardonnay than on V. champinii, regardless of shaving or not-shaving to remove trichomes. In addition, trichomes caused more frequent standing/walking/test-probing behaviors on V. champinii, whose xylem was rapidly accepted for sharpshooter ingestion once probing began. Thus, EPG can detect a novel type of grapevine resistance to X. fastidiosa-to the vector's probing process and inoculation of bacteria-in addition to the bacterial infection and symptom development processes that are the basis for most resistance breeding today. Future research could use EPG to screen grapevines for this novel type of resistance.


Assuntos
Hemípteros , Vitis , Xylella , Animais , Melhoramento Vegetal , Doenças das Plantas
13.
Plants (Basel) ; 10(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205907

RESUMO

Some grapevine rootstocks perform better than others during and after drought events, yet it is not clear how inherent and stress-induced differences in root morphology and anatomy along the length of fine roots are involved in these responses. Using a variety of growing conditions and plant materials, we observed significant differences in root diameter, specific root length (SRL) and root diameter distribution between two commonly used commercial grapevine rootstocks: Richter 110 (110R; drought resistant) and Millardet et de Grasset 101-14 (101-14Mgt; drought sensitive). The 110R consistently showed greater root diameters with smaller SRL and proportion of root length comprised of fine lateral roots. The 110R also exhibited significantly greater distance from tip to nearest lateral, longer white root length, and larger proportion of root length that is white under drought stress. Mapping of fine root cortical lacunae showed similar patterns between the rootstocks; mechanical failure of cortical cells was common in the maturation zone, limited near the root tip, and increased with drought stress for both genotypes; however, lacuna formed under wetter soil conditions in 110R. Results suggest that drought resistance in grapevine rootstocks is associated with thick, limitedly branched roots with a larger proportion of white-functional roots that tend to form lacuna under more mild water deficit, all of which likely favor continued resource acquisition at depth.

14.
BMC Plant Biol ; 10: 135, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20591199

RESUMO

BACKGROUND: Plant cytochrome P450 monooxygenases (CYP) mediate synthesis and metabolism of many physiologically important primary and secondary compounds that are related to plant defense against a range of pathogenic microbes and insects. To determine if cytochrome P450 monooxygenases are involved in defense response to Xylella fastidiosa (Xf) infection, we investigated expression and regulatory mechanisms of the cytochrome P450 monooxygenase CYP736B gene in both disease resistant and susceptible grapevines. RESULTS: Cloning of genomic DNA and cDNA revealed that the CYP736B gene was composed of two exons and one intron with GT as a donor site and AG as an acceptor site. CYP736B transcript was up-regulated in PD-resistant plants and down-regulated in PD-susceptible plants 6 weeks after Xf inoculation. However, CYP736B expression was very low in stem tissues at all evaluated time points. 5'RACE and 3'RACE sequence analyses revealed that there were three candidate transcription start sites (TSS) in the upstream region and three candidate polyadenylation (PolyA) sites in the downstream region of CYP736B. Usage frequencies of each transcription initiation site and each polyadenylation site varied depending on plant genotype, developmental stage, tissue, and treatment. These results demonstrate that expression of CYP736B is regulated developmentally and in response to Xf infection at both transcriptional and post-transcriptional levels. Multiple transcription start and polyadenylation sites contribute to regulation of CYP736B expression. CONCLUSIONS: This report provides evidence that the cytochrome P450 monooxygenase CYP736B gene is involved in defense response at a specific stage of Xf infection in grapevines; multiple transcription initiation and polyadenylation sites exist for CYP736B in grapevine; and coordinative and selective use of transcription initiation and polyadenylation sites play an important role in regulation of CYP736B expression during growth, development and response to Xf infection.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Vitis/enzimologia , Vitis/microbiologia , Xylella/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Sistema Enzimático do Citocromo P-450/genética , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genoma de Planta , Dados de Sequência Molecular , Poliadenilação , Splicing de RNA , Vitis/genética
15.
Theor Appl Genet ; 121(4): 789-99, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20490447

RESUMO

The dagger nematode, Xiphinema index, feeds aggressively on grape roots and in the process, vectors grapevine fanleaf virus (GFLV) leading to the severe viral disease known as fanleaf degeneration. Resistance to X. index and GFLV has been the key objective of grape rootstock breeding programs. A previous study found that resistance to X. index derived from Vitis arizonica was largely controlled by a major quantitative trait locus, XiR1 (X. index Resistance 1), located on chromosome 19. The study presented here develops high-resolution genetic and physical maps in an effort to identify the XiR1 gene(s). The mapping was carried out with 1,375 genotypes in three populations derived from D8909-15, a resistant selection from a cross of V. rupestris A. de Serres (susceptible) x V. arizonica b42-26 (resistant). Resistance to X. index was evaluated on 99 informative recombinants that were identified by screening the three populations with two markers flanking the XiR1 locus. The high-resolution genetic map of XiR1 was primarily constructed with seven DNA markers developed in this study. Physical mapping of XiR1 was accomplished by screening three bacterial artificial chromosome (BAC) libraries constructed from D8909-15, V. vinifera Cabernet Sauvignon and V. arizonica b42-26. A total of 32 BAC clones were identified and the XiR1 locus was delineated within a 115 kb region. Sequence analysis of three BAC clones identified putative nucleotide binding/leucine-rich repeat (NB-LRR) genes. This is the first report of a closely linked major gene locus responsible for ectoparasitic nematode resistance. The markers developed from this study are being used to expedite the breeding of resistant grape rootstocks.


Assuntos
Loci Gênicos/genética , Imunidade Inata/genética , Nematoides/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Vitis/genética , Vitis/parasitologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Éxons/genética , Marcadores Genéticos , Genótipo , Íntrons/genética , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Doenças das Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Recombinação Genética , Alinhamento de Sequência , Transcrição Gênica , Vitis/imunologia
16.
Hortic Res ; 7: 104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637132

RESUMO

Cultivated grapevines (Vitis vinifera) lack resistance to powdery mildew (PM) with few exceptions. Resistance to this pathogen within V. vinifera has been reported in earlier studies and identified as the Ren1 locus in two Central Asian table grape accessions. Other PM-resistant cultivated varieties and accessions of the wild ancestor V. vinifera subsp. sylvestris were soon identified raising questions regarding the origin of the resistance. In this study, F1 breeding populations were developed with a PM susceptible V. vinifera subsp. vinifera breeding line and a PM-resistant subsp. sylvestris accession. Genotyping was carried out with five Ren1 locus linked SSR markers. A PM resistance locus explaining up to 96% of the phenotypic variation was identified in the same genomic position, where the Ren1 locus was previously reported. New SSR marker alleles linked with the resistance locus were identified. We report results of PM resistance in multiple accessions of subsp. sylvestris collected as seed lots or cuttings from five countries in the Caucasus and Central Asia. A total of 20 females from 11 seed lots and 19 males from nine seed lots collected from Georgia, Armenia, and Azerbaijan were resistant to PM. Three male and one female plant collected as cuttings from Afghanistan and Iran were also resistant to PM. Allelic analysis of markers linked with the Ren1 locus in conjunction with disease evaluation data found a high diversity of allelic haplotypes, which are only possible via recombination events occurring over a long time period. Sequence analysis of two alleles of the SSR marker that cosegregates with the resistance found SNPs that were present in the wild progenitor and in cultivated forms. Variable levels of PM resistance among the tested accessions were also observed. These lines of evidence suggest that the powdery mildew fungus may have been present in Asia for a longer time than currently thought, giving the wild progenitor V. vinifera subsp. sylvestris time to coevolve with and develop resistance to this pathogen.

17.
PLoS One ; 15(8): e0237545, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764829

RESUMO

Pierce's disease is of major concern for grapevine (Vitis vinifera) production wherever the bacterial pathogen Xylella fastidiosa and its vectors are present. Long-term management includes the deployment of resistant grapevines such as those containing the PdR1 locus from the wild grapevine species Vitis arizonica, which do not develop Pierce's disease symptoms upon infection. However, little is understood about how the PdR1 locus functions to prevent disease symptom development. Therefore, we assessed the concentrations of plant defense-associated compounds called phenolics in healthy and X. fastidiosa-infected PdR1-resistant and susceptible grapevine siblings over time. Soluble foliar phenolic levels, especially flavonoids, in X. fastidiosa-infected PdR1-resistant grapevines were discovered to be significantly lower than those in infected susceptible grapevines. Therefore, it was hypothesized that PdR1-resistant grapevines, by possessing lowered flavonoid levels, affects biofilm formation and causes reduced X. fastidiosa intra-plant colonization, thus limiting the ability to increase pathogen populations and cause Pierce's disease. These results therefore reveal that differences in plant metabolite levels might be a component of the mechanisms that PdR1 utilizes to prevent Pierce's disease.


Assuntos
Infecções/tratamento farmacológico , Fenóis/farmacologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/genética , Vitis/efeitos dos fármacos , Xylella/efeitos dos fármacos , Xylella/patogenicidade , Progressão da Doença , Suscetibilidade a Doenças , Infecções/metabolismo , Infecções/microbiologia , Mutação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Vitis/crescimento & desenvolvimento , Xylella/metabolismo
18.
PLoS One ; 15(12): e0243445, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33338052

RESUMO

Pierce's disease (PD) caused by the bacterium Xylella fastidiosa is a deadly disease of grapevines. This study used 20 SSR markers to genotype 326 accessions of grape species collected from the southeastern and southwestern United States, Mexico and Costa Rica. Two hundred sixty-six of these accessions, and an additional 12 PD resistant hybrid cultivars developed from southeastern US grape species, were evaluated for PD resistance. Disease resistance was evaluated by quantifying the level of bacteria in stems and measuring PD symptoms on the canes and leaves. Both Bayesian clustering and principal coordinate analyses identified two groups with an east-west divide: group 1 consisted of grape species from the southeastern US and Mexico, and group 2 consisted of accessions collected from the southwestern US and Mexico. The Sierra Madre Oriental mountain range appeared to be a phylogeographic barrier. The state of Texas was identified as a potential hybridization zone. The hierarchal STRUCTURE analysis on each group showed clustering of unique grape species. An east-west divide was also observed for PD resistance. With the exception of Vitis candicans and V. cinerea accessions collected from Mexico, all other grape species as well as the resistant southeastern hybrid cultivars were susceptible to the disease. Southwestern US grape accessions from drier desert regions showed stronger resistance to the disease. Strong PD resistance was observed within three distinct genetic clusters of V. arizonica which is adapted to drier environments and hybridizes freely with other species across its wide range.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/microbiologia , Vitis/crescimento & desenvolvimento , Xylella/patogenicidade , Costa Rica , Genótipo , Humanos , Hibridização Genética/genética , México , Doenças das Plantas/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Sudoeste dos Estados Unidos , Texas , Vitis/genética , Vitis/microbiologia
19.
Heliyon ; 6(12): e05708, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33385078

RESUMO

Mechanistic modeling constitutes a powerful tool to unravel complex biological phenomena. This study describes the construction of a mechanistic, dynamic model for grapevine plant growth and canopy biomass (vigor). To parametrize and validate the model, the progeny from a cross of Ramsey (Vitis champinii) × Riparia Gloire (V. riparia) was evaluated. Plants with different vigor were grown in a greenhouse during the summer of 2014 and 2015. One set of plants was grafted with Cabernet Sauvignon. Shoot growth rate (b), leaf area (LA), dry biomass, whole plant and root specific hydraulic conductance (kH and Lpr), stomatal conductance (gs), and water potential (Ψ) were measured. Partitioning indices and specific leaf area (SLA) were calculated. The model includes an empirical fit of a purported seasonal pattern of bioactive GAs based on published seasonal evolutionary levels and reference values. The model provided a good fit of the experimental data, with R = 0.85. Simulation of single trait variations defined the individual effect of each variable on vigor determination. The model predicts, with acceptable accuracy, the vigor of a young plant through the measurement of Lpr and SLA. The model also permits further understanding of the functional traits that govern vigor, and, ultimately, could be considered useful for growers, breeders and those studying climate change.

20.
Funct Plant Biol ; 46(3): 228-235, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-32172766

RESUMO

Cultivars of grapevine are commonly grafted onto rootstocks to improve resistance against biotic and abiotic stress, however, it is not clear whether known differences in hydraulic traits are conferred from rootstocks to a common scion. We recently found that Vitis riparia and Vitis champinii differed in drought-induced embolism susceptibility and repair, which was related to differences in root pressure generation after rewatering (Knipfer et al. 2015). In the present study, we tested whether these and other physiological responses to drought are conferred to a common V. vinifera scion (Cabernet Sauvignon) grafted on V. riparia and V. champinii rootstocks. We measured xylem embolism formation/repair using in vivo microCT imaging, which was accompanied with analysis of leaf gas exchange, osmotic adjustment and root pressure. Our data indicate that differences in scion physiological behaviour for both rootstock combinations were negligible, suggesting that the sensitivity of Cabernet Sauvignon scion to xylem embolism formation/repair, leaf gas exchange and osmotic adjustment is unaffected by either V. riparia or V. champinii rootstock in response to drought stress.


Assuntos
Vitis , Secas , Folhas de Planta , Raízes de Plantas , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA