Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 35(48): 15692-15700, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31581771

RESUMO

The quartz crystal microbalance (QCM) has been used to study how the interfacial layer of an ionic liquid dissolved in a polar oil at low weight percentages responds to changes in applied potential. The changes in surface composition at the QCM gold surface depend on both the magnitude and sign of the applied potential. The time-resolved response indicates that the relaxation kinetics are limited by the diffusion of ions in the interfacial region and not in the bulk, since there is no concentration dependence. The measured mass changes cannot be explained only in terms of simple ion exchange; the relative molecular volumes of the ions and the density changes in response to ion exclusion must be considered. The relaxation behavior of the potential between the electrodes upon disconnecting the applied potential is more complex than that observed for pure ionic liquids, but a measure of the surface charge can be extracted from the exponential decay when the rapid initial potential drop is accounted for. The adsorbed film at the gold surface consists predominantly of ionic liquid despite the low concentration, which is unsurprising given the surtactant-like structures of (some of) the ionic liquid ions. Changes in response to potential correspond to changes in the relative numbers of cations and anions, rather than a change in the oil composition. No evidence for an electric field induced change in viscosity is observed. This work shows conclusively that electric potentials can be used to control the surface composition, even in an oil-based system, and paves the way for other ion solvent studies.

2.
Anal Chem ; 90(8): 5366-5374, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29589451

RESUMO

When using biosensors, analyte biomolecules of several different concentrations are percolated over a chip with immobilized ligand molecules that form complexes with analytes. However, in many cases of biological interest, e.g., in antibody interactions, complex formation steady-state is not reached. The data measured are so-called sensorgram, one for each analyte concentration, with total complex concentration vs time. Here we present a new four-step strategy for more reliable processing of this complex kinetic binding data and compare it with the standard global fitting procedure. In our strategy, we first calculate a dissociation graph to reveal if there are any heterogeneous interactions. Thereafter, a new numerical algorithm, AIDA, is used to get the number of different complex formation reactions for each analyte concentration level. This information is then used to estimate the corresponding complex formation rate constants by fitting to the measured sensorgram one by one. Finally, all estimated rate constants are plotted and clustered, where each cluster represents a complex formation. Synthetic and experimental data obtained from three different QCM biosensor experimental systems having fast (close to steady-state), moderate, and slow kinetics (far from steady-state) were evaluated using the four-step strategy and standard global fitting. The new strategy allowed us to more reliably estimate the number of different complex formations, especially for cases of complex and slow dissociation kinetics. Moreover, the new strategy proved to be more robust as it enables one to handle system drift, i.e., data from biosensor chips that deteriorate over time.


Assuntos
Algoritmos , Técnicas Biossensoriais , Técnicas de Microbalança de Cristal de Quartzo , Cinética
3.
Nanoscale ; 7(38): 16039-45, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26370450

RESUMO

Electrochemical quartz crystal microbalance has been used to measure changes in the composition of the capacitive electrical double layer for 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)-trifluorophosphate, an ionic liquid, in contact with a gold electrode surface as a function of potential. The mass difference between the cation and anion means that the technique can effectively "weigh" the surface charge accurately with high temporal resolution. This reveals quantitatively how changing the potential alters the ratio of cations and anions associated with the electrode surface, and thus the charge per unit area, as well as the kinetics associated with these interfacial processes. The measurements reveal that it is diffusion of co-ions into the interfacial region rather than expulsion of counterions that controls the relaxation. The measured potential dependent double layer capacitance experimentally validates recent theoretical predictions for counterion overscreening (low potentials) and crowding (high potentials) at electrode surfaces. This new capacity to quantitatively measure ion composition is critical for ionic liquid applications ranging from batteries, capacitors and electrodeposition through to boundary layer structure in tribology, and more broadly provides new insight into interfacial processes in concentrated electrolyte solutions.

4.
Anal Biochem ; 341(1): 89-93, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15866532

RESUMO

Proinsulin C-peptide was electroimmobilized to a quartz crystal microbalance sensor chip, localizing this low-pI peptide for covalent attachment to activated surface carboxyl groups. The resulting chip was used in a continuous flow biosensor to capture anti-C-peptide antibodies, which could subsequently be eluted in 5% formic acid between air bubbles for efficient recovery and mass spectrometric identification. The method is reproducible through repeated cycles, providing affinity purification of proteins under real-time monitoring of the binding and elution processes.


Assuntos
Técnicas Biossensoriais/instrumentação , Peptídeo C/isolamento & purificação , Proinsulina/isolamento & purificação , Quartzo , Sequência de Aminoácidos , Sítios de Ligação de Anticorpos , Peptídeo C/química , Humanos , Dados de Sequência Molecular , Proinsulina/química , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA