Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 326(4): C1226-C1236, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38406827

RESUMO

Cancer and chemotherapy induce a severe loss of muscle mass (known as cachexia), which negatively impact cancer treatment and patient survival. The aim of the present study was to investigate whether cannabidiol (CBD) administration may potentially antagonize the effects of cisplatin in inducing muscle atrophy, using a model of myotubes in culture. Cisplatin treatment resulted in a reduction of myotube diameter (15.7 ± 0.3 vs. 22.2 ± 0.5 µm, P < 0.01) that was restored to control level with 5 µM CBD (20.1 ± 0.4 µM, P < 0.01). Protein homeostasis was severely altered with a ≈70% reduction in protein synthesis (P < 0.01) and a twofold increase in proteolysis (P < 0.05) in response to cisplatin. Both parameters were dose dependently restored by CBD cotreatment. Cisplatin treatment was associated with increased thiobarbituric acid reactive substances (TBARS) content (0.21 ± 0.03 to 0.48 ± 0.03 nmol/mg prot, P < 0.05), catalase activity (0.24 ± 0.01 vs. 0.13 ± 0.02 nmol/min/µg prot, P < 0.01), whereas CBD cotreatment normalized TBARS content to control values (0.22 ± 0.01 nmol/mg prot, P < 0.01) and reduced catalase activity (0.17 ± 0.01 nmol/min/µg prot, P < 0.05). These changes were associated with increased mRNA expression of GPX1, SOD1, SOD2, and CAT mRNA expression in response to cisplatin (P < 0.01), which was corrected by CBD cotreatment (P < 0.05). Finally, cisplatin treatment increased the mitochondrial protein content of NDUFB8, UQCRC2, COX4, and VDAC1 (involved in mitochondrial respiration and apoptosis), and CBD cotreatment restored their expression to control values. Altogether, our results demonstrated that CBD antagonize the cisplatin-induced C2C12 myotube atrophy and could be used as an adjuvant in the treatment of cancer cachexia to help maintain muscle mass and improve patient quality of life.NEW & NOTEWORTHY In an in vitro model, cisplatin treatment led to myotube atrophy associated with dysregulation of protein homeostasis and increased oxidative stress, resulting in increased apoptosis. Cotreatment with cannabidiol was able to prevent this phenotype by promoting protein homeostasis and reducing oxidative stress.


Assuntos
Canabidiol , Neoplasias , Humanos , Cisplatino/toxicidade , Canabidiol/farmacologia , Canabidiol/metabolismo , Canabidiol/uso terapêutico , Caquexia/metabolismo , Catalase/metabolismo , Qualidade de Vida , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/prevenção & controle , Atrofia Muscular/tratamento farmacológico , Estresse Oxidativo , Neoplasias/metabolismo , RNA Mensageiro/metabolismo
2.
Curr Opin Clin Nutr Metab Care ; 27(4): 372-377, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456815

RESUMO

PURPOSE OF REVIEW: This review provides the latest insight into the impact of consuming plant-based protein for older people. RECENT FINDINGS: According to the latest data, a healthy diet rich in plant-based-protein-rich-food could promote healthy aging. This health effect is partly because of the amino acid composition of proteins, as well as to the important constituents such as fiber and bioactive compounds found in the matrix. Furthermore, even though animal protein is more effective at stimulating muscle protein synthesis, a high consumption of plant protein (beyond 31 g/day) appears to enhance physical performance and reduce the risk of frailty in older individuals. SUMMARY: Recent literature highlights numerous health benefits for older people associated with a substantial intake of plant-based vs. animal-based protein, both in preventing and mitigating chronic age-related diseases and reducing the risk of all-cause mortality. However, a high intake of plant-based protein-rich products could pose risks of malnutrition and fiber-related intestinal intolerances. Further research is needed to assess the risk-benefit ratio of a high consumption of plant proteins in older individuals before we can make robust recommendations on how far animal proteins can be healthfully replaced with plant proteins.


Assuntos
Proteínas Animais da Dieta , Idoso , Humanos , Envelhecimento , Proteínas Animais da Dieta/administração & dosagem , Dieta Saudável/métodos , Fibras na Dieta , Proteínas Alimentares/administração & dosagem , Fragilidade/prevenção & controle , Envelhecimento Saudável , Proteínas de Vegetais Comestíveis/administração & dosagem
3.
Am J Physiol Endocrinol Metab ; 324(2): E176-E184, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36629822

RESUMO

Sarcopenia, the age-related loss of skeletal muscle mass, is associated with lipid accumulation and anabolic resistance; phenomena also observed in obesity and worsen when obesity and aging are combined. The endocannabinoid system (ECS) is overactivated in obesity, but its role in aging obesity-related muscle dysfunction is unknown. The aims of this study were to evaluate the effect of inhibition of the ECS by rimonabant (RIM) on the metabolic alterations induced by a high-fat high-sucrose diet and on skeletal muscle mass/function in aged mice. Eighteen-month-old male mice were subjected to a control (CTL) or a high-fat high-sucrose (HFHS) diet for 24 weeks. Mice were administered with saline or RIM (10 mg/kg/day) for the last 4 weeks of the diet. Skeletal muscle function was evaluated by open-field, rotarod, and grip strength tests. Metabolic alterations in liver, adipose tissue, and skeletal muscle were investigated by quantitative RT-PCR. Body mass was higher in HFHS mice compared to CTL mice (48.0 ± 1.5 vs. 33.5 ± 0.7 g, P < 0.01), as a result of fat accumulation (34.8 ± 1.0 vs. 16.7 ± 0.8%, P < 0.01). RIM reduced body fat mass in both CTL (-16%, P < 0.05) and HFHS conditions (-40%, P < 0.01), without affecting hindlimb skeletal muscle mass. In HFHS mice, grip strength evolution was improved (-0.29 ± 0.06 vs. -0.49 ± 0.06 g/g lean mass, P < 0.05), and rotarod activity was increased by ≈60% in response to RIM (45.9 ± 6.3 vs. 28.5 ± 4.6 cm, P < 0.05). Lipolysis and ß-oxidation genes were upregulated in the liver as well as genes involved in adipose tissue browning. These results demonstrate that inhibition of the ECS induces metabolic changes in liver and adipose tissue associated with a reversion of the obese phenotype and that RIM is able to improve motor coordination and muscle strength in aged mice, without affecting skeletal muscle mass.NEW & NOTEWORTHY In 24-month-old mice submitted to high-fat high-sucrose-induced obesity, inhibition of the endocannabinoid system by rimonabant reversed the obese phenotype by promoting adipose tissue browning and ß-oxidation in the liver but not in skeletal muscle. These metabolism modifications are associated with improved skeletal muscle function.


Assuntos
Endocanabinoides , Obesidade , Masculino , Animais , Camundongos , Endocanabinoides/metabolismo , Rimonabanto/farmacologia , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Dieta Hiperlipídica , Fenótipo , Sacarose/farmacologia , Camundongos Endogâmicos C57BL
4.
Crit Rev Food Sci Nutr ; 63(7): 920-946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34310247

RESUMO

Given the growing world population, there is a need to balance animal and vegetable sources of dietary protein and to limit overall protein resources, and food formulation has to consider alternative protein sources as a way to meet human requirements. The protein concentration, essential amino acids (EAA) of all protein sources were analyzed with respect to human needs along with additional macronutrients of nutritional and energy interest (i.e. carbohydrates and lipids). New indexes are proposed to classify the alternative protein sources considering their EAA balance and how it may change during food processing. A global overview of all protein sources is provided including the quantity of food and associated caloric intakes required to fulfill our daily protein needs. As texture is a key parameter in food formulation, and is often influenced by protein gelation, we conducted an exhaustive review of the literature in a large scientific database on the ability of proteins from all sources to go through the sol-gel transition with the corresponding physical-chemical conditions. Traditional and innovative recipes are discussed and some improvement are proposed in terms of their ability to fulfill human needs for EAA and food and caloric intakes.


Assuntos
Proteínas Alimentares , Ingestão de Energia , Animais , Humanos , Proteínas Alimentares/metabolismo , Nutrientes , Verduras
5.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563153

RESUMO

Aging is associated with a progressive loss of skeletal muscle mass and function termed sarcopenia. Various metabolic alterations that occur with aging also increase the risk of undernutrition, which can worsen age-related sarcopenia. However, the impact of undernutrition on aged skeletal muscle remains largely under-researched. To build a deeper understanding of the cellular and molecular mechanisms underlying age-related sarcopenia, we characterized the undernutrition-induced changes in the skeletal muscle proteome in old rats. For this study, 20-month-old male rats were fed 50% or 100% of their spontaneous intake for 12 weeks, and proteomic analysis was performed on both slow- and fast-twitch muscles. Proteomic profiling of undernourished aged skeletal muscle revealed that undernutrition has profound effects on muscle proteome independently of its effect on muscle mass. Undernutrition-induced changes in muscle proteome appear to be muscle-type-specific: slow-twitch muscle showed a broad pattern of differential expression in proteins important for energy metabolism, whereas fast-twitch muscle mainly showed changes in protein turnover between undernourished and control rats. This first proteomic analysis of undernourished aged skeletal muscle provides new molecular-level insight to explain phenotypic changes in undernourished aged muscle. We anticipate this work as a starting point to define new biomarkers associated with undernutrition-induced muscle loss in the elderly.


Assuntos
Desnutrição , Sarcopenia , Envelhecimento/metabolismo , Animais , Masculino , Desnutrição/metabolismo , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Proteômica , Ratos , Sarcopenia/metabolismo
6.
J Cell Physiol ; 236(4): 2669-2683, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32885412

RESUMO

Sarcopenia is an age-related loss of muscle mass associated with changes in skeletal muscle protein homeostasis due to lipid accumulation and anabolic resistance; changes that are also commonly described in obesity. Activation of the endocannabinoid system is associated with the development of obesity and insulin resistance, and with the perturbed skeletal muscle development. Taken together this suggests that endocannabinoids could be regulators of skeletal muscle protein homeostasis. Here we report that rimonabant, an antagonist for the CB1 receptor, can prevent dexamethasone-induced C2C12 myotube atrophy without affecting the mRNA expression of atrogin-1/MAFbx (a marker of proteolysis), which suggests it is involved in the control of protein synthesis. Rimonabant alone stimulates protein synthesis in a time- and dose-dependent manner through mTOR- and intracellular calcium-dependent mechanisms. CB1 agonists are unable to modulate protein synthesis or prevent the effect of rimonabant. Using C2C12 cells stably expressing an shRNA directed against CB1, or HEK293 cells overexpressing HA-tagged CB1, we demonstrated that the effect of rimonabant is unaffected by CB1 expression level. In summary, rimonabant can stimulate protein synthesis in C2C12 myotubes through a CB1-independent mechanism. These results highlight the need to identify non-CB1 receptor(s) mediating the pro-anabolic effect of rimonabant as potential targets for the treatment of sarcopenia, and to design new side-effect-free molecules that consolidate the effect of rimonabant on skeletal muscle protein synthesis.


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Rimonabanto/farmacologia , Animais , Cálcio/metabolismo , Dexametasona/toxicidade , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo
7.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921590

RESUMO

(1) Background: Aging is associated with a progressive decline in muscle mass and function. Aging is also a primary risk factor for metabolic syndrome, which further alters muscle metabolism. However, the molecular mechanisms involved remain to be clarified. Herein we performed omic profiling to decipher in muscle which dominating processes are associated with healthy aging and metabolic syndrome in old men. (2) Methods: This study included 15 healthy young, 15 healthy old, and 9 old men with metabolic syndrome. Old men were selected from a well-characterized cohort, and each vastus lateralis biopsy was used to combine global transcriptomic and proteomic analyses. (3) Results: Over-representation analysis of differentially expressed genes (ORA) and functional class scoring of pathways (FCS) indicated that healthy aging was mainly associated with upregulations of apoptosis and immune function and downregulations of glycolysis and protein catabolism. ORA and FCS indicated that with metabolic syndrome the dominating biological processes were upregulation of proteolysis and downregulation of oxidative phosphorylation. Proteomic profiling matched 586 muscle proteins between individuals. The proteome of healthy aging revealed modifications consistent with a fast-to-slow transition and downregulation of glycolysis. These transitions were reduced with metabolic syndrome, which was more associated with alterations in NADH/NAD+ shuttle and ß-oxidation. Proteomic profiling further showed that all old muscles overexpressed protein chaperones to preserve proteostasis and myofiber integrity. There was also evidence of aging-related increases in reactive oxygen species but better detoxifications of cytotoxic aldehydes and membrane protection in healthy than in metabolic syndrome muscles. (4) Conclusions: Most candidate proteins and mRNAs identified herein constitute putative muscle biomarkers of healthy aging and metabolic syndrome in old men.


Assuntos
Síndrome Metabólica/metabolismo , Proteômica/métodos , Animais , Glicólise/genética , Glicólise/fisiologia , Humanos , Síndrome Metabólica/genética , Músculo Esquelético/metabolismo , Sarcopenia/genética , Sarcopenia/metabolismo , Transcriptoma/genética
9.
Br J Nutr ; 121(5): 496-507, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30526703

RESUMO

This study aimed to evaluate the nutritional value of pasta enriched with legume or wheat gluten proteins and dried at varying temperature. A total of four isonitrogenous experimental diets were produced using gluten powder/wheat semolina (6/94, g/g) pasta and faba bean flour/wheat semolina (35/65, g/g) pasta dried at either 55°C (GLT and FLT, respectively) or 90°C (FVHT and GVHT, respectively). Experimental diets were fed to ten 1-month-old Wistar rats (body weight=176 (sem 15) g) for 21 d. Growth and nutritional, metabolic and inflammatory markers were measured and compared with an isonitrogenous casein diet (CD). The enrichment with faba bean increased the lysine, threonine and branched amino acids by 97, 23 and 10 %, respectively. Protein utilisation also increased by 75 % (P<0·01) in FLT in comparison to GLT diet, without any effect on the corrected faecal digestibility (P>0·05). Faba bean pasta diets' corrected protein digestibility and utilisation was only 3·5 and 9 %, respectively, lower than the CD. Growth rate, blood composition and muscle weights were not generally different with faba bean pasta diets compared with CD. Corrected protein digestibility was 3 % lower in GVHT than GLT, which may be associated with greater carboxymethyllysine. This study in growing rats clearly indicates improvement in growth performance of rats fed legume-enriched pasta diet compared with rats fed gluten-wheat pasta diet, regardless of pasta drying temperature. This means faba bean flour can be used to improve the protein quality and quantity of pasta.

10.
Eur J Appl Physiol ; 119(9): 2075-2082, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31346707

RESUMO

The effect of exercise on sleep remains controversial in athletes especially in junior athletes. This study tested the acute effect of additional intense rugby training on sleep, next-day dietary intake, and physical performances in adolescent rugby players compared to a day with regular exercise. 17 male rugby players in the national under-17 category (age: 15.7 ± 1.1 years, height: 1.78 ± 0.1 m, weight: 84.4 ± 13.6 kg, BMI: 26.6 ± 3.8 kg/m2, fat mass: 14.5 ± 3.4%, VO2max Yo-Yo test: 52.1 ± 4.4 mL/min/kg, evening chronotype) took part in this study. The athletes completed two 36-h experimental sessions in random order: a regular exercise program (REP) vs. an intensified exercise program (IEP) at a 1-week interval. Physical activity and sleep data were collected using accelerometers. Performance tests were conducted the next morning after an ad libitum breakfast. Sleep improved during intensive training (TST: + 26 min, SL: - 4%, WASO: - 39%, SE: + 8.5%) with moderate effect size. There was no next-day difference in calorie intake from breakfast, but macronutrient composition shifted toward proteins (regular: 15.4 ± 6.1% vs. intensive: 18.9 ± 7.4%, ES = - 0.650 [- 1.13; - 0.18]). There were no significant differences in Wingate test performance or spatial awareness task time. However, performance in submaximal tests improved. Acute intensified training results in increased sleep duration and quality without disturbing next-day performance or dietary intake in young rugby players.


Assuntos
Desempenho Atlético/fisiologia , Ingestão de Energia/fisiologia , Exercício Físico/fisiologia , Futebol Americano/fisiologia , Sono/fisiologia , Adolescente , Atletas , Peso Corporal/fisiologia , Ritmo Circadiano/fisiologia , Terapia por Exercício/métodos , Humanos , Masculino
11.
Curr Opin Clin Nutr Metab Care ; 21(6): 465-470, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30239340

RESUMO

PURPOSE OF REVIEW: A large percentage of older adults do not receive recommended amounts of many nutrients from food alone. Accordingly, the routine use of dietary supplements has become common among older persons. Although supplement use provides potential benefits by increasing nutrient intakes, there are potential drawbacks. RECENT FINDINGS: Clinical studies have pointed to potential reductions in the risk to develop age-related diseases among older people who reported long-term use of multivitamin supplements. Higher plasma levels of omega-3 polyunsaturated fatty acids were also associated with fewer cardiovascular deaths in older people consuming omega-3 supplements. Dietary protein supplementation combined with exercise had a strong effect in preventing age-related muscle mass attenuation and leg strength loss in older people. Finally, beneficial effects of purified flavonoids on cognitive functions have been reported in some studies, whereas in a significant number of other studies, no such effect could be observed. SUMMARY: The use of dietary supplements among older people has increased over the years due to the expectation of reducing the risk of developing chronic diseases. Although some dietary supplements may indeed fulfill some of these expectations, it would be unwise to assume that they are all efficacious and safe to use.


Assuntos
Doença Crônica/prevenção & controle , Suplementos Nutricionais/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Feminino , Humanos , Masculino
13.
FASEB J ; 31(1): 203-211, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27729412

RESUMO

Adiponectin is an adipocyte-derived adipokine with potent antidiabetic, anti-inflammatory, and antiatherogenic activity. Long-term, high-fat diet results in gain of body weight, adiposity, further inflammatory-based cardiovascular diseases, and reduced adiponectin secretion. Vitamin A derivatives/retinoids are involved in several of these processes, which mainly take place in white adipose tissue (WAT). In this study, we examined adiponectin expression as a function of dietary high-fat and high-vitamin A conditions in mice. A decrease of adiponectin expression in addition to an up-regulation of aldehyde dehydrogenase A1 (ALDH1A1), retinoid signaling, and retinoic acid response element signaling was selectively observed in WAT of mice fed a normal-vitamin A, high-fat diet. Reduced adiponectin expression in WAT was also observed in mice fed a high-vitamin A diet. Adipocyte cell culture revealed that endogenous and synthetic retinoic acid receptor (RAR)α- and RARγ-selective agonists, as well as a synthetic retinoid X receptor agonist, efficiently reduced adiponectin expression, whereas ALDH1A1 expression only increased with RAR agonists. We conclude that reduced adiponectin expression under high-fat dietary conditions is dependent on 1) increased ALDH1A1 expression in adipocytes, which does not increase all-trans-retinoic acid levels; 2) further RAR ligand-induced, WAT-selective, increased retinoic acid response element-mediated signaling; and 3) RAR ligand-dependent reduction of adiponectin expression.-Landrier, J.-F., Kasiri, E., Karkeni, E., Mihály, J., Béke, G., Weiss, K., Lucas, R., Aydemir, G., Salles, J., Walrand, S., de Lera, A. R., Rühl, R. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue.


Assuntos
Adiponectina/metabolismo , Aldeído Desidrogenase/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/fisiologia , Receptores do Ácido Retinoico/metabolismo , Células 3T3-L1 , Adipócitos/fisiologia , Adiponectina/genética , Tecido Adiposo/fisiologia , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Alcaloides , Ração Animal/análise , Animais , Suplementos Nutricionais , Regulação para Baixo/fisiologia , Masculino , Camundongos , Camundongos Knockout , Obesidade , Oxindóis , Receptores do Ácido Retinoico/genética , Retinal Desidrogenase , Transdução de Sinais/fisiologia , Tretinoína/metabolismo , Regulação para Cima , Vitamina A/administração & dosagem
14.
J Am Coll Nutr ; 37(1): 34-43, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28976265

RESUMO

BACKGROUND: Adequate vitamin D status contributes to bone fragility risk reduction and possibly other pathological conditions that occur with aging. In response to pharmaceutical vitamin D3 supplements, several studies have documented the influence of doses, baseline status, and seasonality on serum 25-hydroyvitamin D (s25OHD). OBJECTIVE: Using fortified yogurt, we investigated in one randomized controlled trial how both baseline status, as assessed by measuring s25OHD prior the onset of the trial, and the season of enrollment quantitatively influenced the response to the supplemented (Suppl.) of vitamin D3 (VitD3) in healthy community-dwelling women. METHODS: A 24-week controlled trial was conducted in menopausal women (mean age: 61.5). Participants were randomized into 3 groups (Gr): Gr.Suppl.0, time controls maintaining dietary habits; Gr.Suppl.5 and Gr.Suppl.10 consuming one and two 125-g servings of VitD3-fortified yogurts with 5- and 10-µg daily doses, respectively. The 16 intervention weeks lasted from early January to mid-August, the 8 follow-up weeks, without product, from late August to mid-October. Before enrollment, subjects were randomized into 2 s25OHD strata: low stratum (LoStr): 25-50 nmol/L; high stratum (HiStr): >50-75 nmol/L. RESULTS: All enrolled participants adhered to the protocol throughout the 24-week study: Gr.Suppl.0 (n = 45), Gr.Suppl.5 (n = 44), and Gr.Suppl.10 (n = 44). Over the 16 intervention and 8 follow-up weeks, s25OHD increased in both supplemented groups, more in Gr.Suppl.10 than in Gr.Suppl.5. At the end of the intervention, the subject proportion with s25OHD ≥ 50 nmol/L was 37.8, 54.5, and 63.6% in Gr.Suppl.0, Gr.Suppl.5, and Gr.Suppl.10, respectively. The constant rate of s25OHD per supplemental VitD3 microgram was greater in LoStr than HiStr. The s25OHD increase was greater with late (mid-March) than early (mid-January) inclusion. CONCLUSION: This randomized trial demonstrates (1) a dose-dependent s25OHD improvement related to fortified yogurt consumption; (2) an inversely baseline-dependent increase in s25OHD; and (3) a seasonal effect that highlights the importance of VitD3-fortified foods during winter, even at 5 µg/d, in healthy menopausal women.


Assuntos
Colecalciferol/uso terapêutico , Alimentos Fortificados , Menopausa/sangue , Deficiência de Vitamina D/tratamento farmacológico , Vitamina D/análogos & derivados , Iogurte , Idoso , Colecalciferol/administração & dosagem , Feminino , Humanos , Pessoa de Meia-Idade , Estações do Ano , Resultado do Tratamento , Vitamina D/sangue , Deficiência de Vitamina D/sangue
15.
Am J Physiol Endocrinol Metab ; 312(1): E27-E36, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27827806

RESUMO

Citrulline (CIT) is an endogenous amino acid produced by the intestine. Recent literature has consistently shown CIT to be an activator of muscle protein synthesis (MPS). However, the underlying mechanism is still unknown. Our working hypothesis was that CIT might regulate muscle homeostasis directly through the mTORC1/PI3K/MAPK pathways. Because CIT undergoes both interorgan and intraorgan trafficking and metabolism, we combined three approaches: in vivo, ex vivo, and in vitro. Using a model of malnourished aged rats, CIT supplementation activated the phosphorylation of S6K1 and 4E-BP1 in muscle. Interestingly, the increase in S6K1 phosphorylation was positively correlated (P < 0.05) with plasma CIT concentration. In a model of isolated incubated skeletal muscle from malnourished rats, CIT enhanced MPS (from 30 to 80% CIT vs. Ctrl, P < 0.05), and the CIT effect was abolished in the presence of wortmannin, rapamycin, and PD-98059. In vitro, on myotubes in culture, CIT led to a 2.5-fold increase in S6K1 phosphorylation and a 1.5-fold increase in 4E-BP1 phosphorylation. Both rapamycin and PD-98059 inhibited the CIT effect on S6K1, whereas only LY-294002 inhibited the CIT effect on both S6K1 and 4E-BP1. These findings show that CIT is a signaling agent for muscle homeostasis, suggesting a new role of the intestine in muscle mass control.


Assuntos
Proteínas de Transporte/efeitos dos fármacos , Citrulina/farmacologia , Desnutrição/metabolismo , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfoproteínas/efeitos dos fármacos , Androstadienos/farmacologia , Animais , Proteínas de Transporte/metabolismo , Cromonas/farmacologia , Citrulina/metabolismo , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfolinas/farmacologia , Complexos Multiproteicos/efeitos dos fármacos , Complexos Multiproteicos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Wortmanina
16.
Curr Opin Clin Nutr Metab Care ; 20(3): 169-174, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28257331

RESUMO

PURPOSE OF REVIEW: We review recent findings on the involvement of vitamin D in skeletal muscle trophicity. RECENT FINDINGS: Vitamin D deficiencies are associated with reduced muscle mass and strength, and its supplementation seems effective to improve these parameters in vitamin D-deficient study participants. Latest investigations have also evidenced that vitamin D is essential in muscle development and repair. In particular, it modulates skeletal muscle cell proliferation and differentiation. However, discrepancies still exist about an enhancement or a decrease of muscle proliferation and differentiation by the vitamin D. Recently, it has been demonstrated that vitamin D influences skeletal muscle cell metabolism as it seems to regulate protein synthesis and mitochondrial function. Finally, apart from its genomic and nongenomic effects, recent investigations have demonstrated a genetic contribution of vitamin D to muscle functioning. SUMMARY: Recent studies support the importance of vitamin D in muscle health, and the impact of its deficiency in regard to muscle mass and function. These 'trophic' properties are of particular importance for some specific populations such as elderly persons and athletes, and in situations of loss of muscle mass or function, particularly in the context of chronic diseases.


Assuntos
Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Deficiência de Vitamina D/metabolismo , Vitamina D/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Suplementos Nutricionais , Humanos , Doenças Musculares/etiologia , Vitamina D/uso terapêutico , Deficiência de Vitamina D/complicações , Vitaminas/uso terapêutico
17.
J Nutr ; 147(12): 2262-2271, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28835387

RESUMO

Background: A promising strategy to help older adults preserve or build muscle mass is to optimize muscle anabolism through providing an adequate amount of high-quality protein at each meal.Objective: This "proof of principle" study investigated the acute effect of supplementing breakfast with a vitamin D and leucine-enriched whey protein medical nutrition drink on postprandial muscle protein synthesis and longer-term effect on muscle mass in healthy older adults.Methods: A randomized, placebo-controlled, double-blind study was conducted in 24 healthy older men [mean ± SD: age 71 ± 4 y; body mass index (in kg/m2) 24.7 ± 2.8] between September 2012 and October 2013 at the Unit of Human Nutrition, University of Auvergne, Clermont-Ferrand, France. Participants received a medical nutrition drink [test group; 21 g leucine-enriched whey protein, 9 g carbohydrates, 3 g fat, 800 IU cholecalciferol (vitamin D3), and 628 kJ] or a noncaloric placebo (control group) before breakfast for 6 wk. Mixed muscle protein fractional synthesis rate (FSR) was measured at week 0 in the basal and postprandial state, after study product intake with a standardized breakfast with the use of l-[2H5]-phenylalanine tracer methodology. The longer-term effect of the medical nutrition drink was evaluated by measurement of appendicular lean mass, representing skeletal muscle mass at weeks 0 and 6, by dual-energy X-ray absorptiometry.Results: Postprandial FSR (0-240 min) was higher in the test group than in the control group [estimate of difference (ED): 0.022%/h; 95% CI: 0.010%/h, 0.035%/h; ANCOVA, P = 0.001]. The test group gained more appendicular lean mass than the control group after 6 wk (ED: 0.37 kg; 95% CI: 0.03, 0.72 kg; ANCOVA, P = 0.035), predominantly as leg lean mass (ED: 0.30 kg; 95% CI: 0.03, 0.57 kg; ANCOVA, P = 0.034).Conclusions: Supplementing breakfast with a vitamin D and leucine-enriched whey protein medical nutrition drink stimulated postprandial muscle protein synthesis and increased muscle mass after 6 wk of intervention in healthy older adults and may therefore be a way to support muscle preservation in older people. This trial was registered at www.trialregister.nl as NTR3471.


Assuntos
Bebidas/análise , Leucina/administração & dosagem , Proteínas Musculares/biossíntese , Vitamina D/administração & dosagem , Proteínas do Soro do Leite/administração & dosagem , Proteínas do Soro do Leite/química , Idoso , Desjejum , Dieta , Método Duplo-Cego , Ingestão de Energia , Análise de Alimentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Músculo Esquelético , Período Pós-Prandial
18.
J Physiol ; 593(12): 2665-77, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25820551

RESUMO

KEY POINTS: Some studies suggest that neuregulin 1 (NRG1) could be involved in the regulation of skeletal muscle energy metabolism in rodents. Here we assessed whether unbalanced diet is associated with alterations of the NRG1 signalling pathway and whether exercise and diet might restore NRG1 signalling in skeletal muscle of obese rats. We show that diet-induced obesity does not impair NRG1 signalling in rat skeletal muscle. We also report that endurance training and a well-balanced diet activate the NRG1 signalling in skeletal muscle of obese rats, possibly via a new mechanism mediated by the protease ADAM17. These results suggest that some beneficial effects of physical activity and diet in obese rats could be partly explained by stimulation of the NRG1 signalling pathway. ABSTRACT: Some studies suggest that the signalling pathway of neuregulin 1 (NRG1), a protein involved in the regulation of skeletal muscle metabolism, could be altered by nutritional and exercise interventions. We hypothesized that diet-induced obesity could lead to alterations of the NRG1 signalling pathway and that chronic exercise could improve NRG1 signalling in rat skeletal muscle. To test this hypothesis, male Wistar rats received a high fat/high sucrose (HF/HS) diet for 16 weeks. At the end of this period, NRG1 and ErbB expression/activity in skeletal muscle was assessed. The obese rats then continued the HF/HS diet or were switched to a well-balanced diet. Moreover, in both groups, half of the animals also performed low intensity treadmill exercise training. After another 8 weeks, NRG1 and ErbB expression/activity in skeletal muscle were tested again. The 16 week HF/HS diet induced obesity, but did not significantly affect the NRG1/ErbB signalling pathway in rat skeletal muscle. Conversely, after the switch to a well-balanced diet, NRG1 cleavage ratio and ErbB4 amount were increased. Chronic exercise training also promoted NRG1 cleavage, resulting in increased ErbB4 phosphorylation. This result was associated with increased protein expression and phosphorylation ratio of the metalloprotease ADAM17, which is involved in NRG1 shedding. Similarly, in vitro stretch-induced activation of ADAM17 in rat myoblasts induced NRG1 cleavage and ErbB4 activation. These results show that low intensity endurance training and well-balanced diet activate the NRG1-ErbB4 pathway, possibly via the metalloprotease ADAM17, in skeletal muscle of diet-induced obese rats.


Assuntos
Dieta , Receptores ErbB/metabolismo , Neuregulina-1/metabolismo , Obesidade/metabolismo , Condicionamento Físico Animal/fisiologia , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animais , Receptores ErbB/genética , Masculino , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Neuregulina-1/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Transdução de Sinais , Inibidor Tecidual de Metaloproteinase-3/metabolismo
19.
FASEB J ; 28(3): 1499-510, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24344330

RESUMO

Hyperthyroidism causes increased energy intake and expenditure, although anorexia and higher weight loss have been reported in elderly individuals with hyperthyroidism. To determine the effect of age on energy homeostasis in response to experimental hyperthyroidism, we administered 200 µg tri-iodothyronine (T3) in 7- and 27-mo-old rats for 14 d. T3 increased energy expenditure (EE) in both the young and the old rats, although the old rats lost more weight (147 g) than the young rats (58 g) because of the discordant effect of T3 on food intake, with a 40% increase in the young rats, but a 40% decrease in the old ones. The increased food intake in the young rats corresponded with a T3-mediated increase in the appetite-regulating proteins agouti-related peptide, neuropeptide Y, and uncoupling protein 2 in the hypothalamus, but no increase occurred in the old rats. Evidence of mitochondrial biogenesis in response to T3 was similar in the soleus muscle and heart of the young and old animals, but less consistent in old plantaris muscle and liver. Despite the comparable increase in EE, T3's effect on mitochondrial function was modulated by age in a tissue-specific manner. We conclude that older rats lack compensatory mechanisms to increase caloric intake in response to a T3-induced increase in EE, demonstrating a detrimental effect of age on energy homeostasis.


Assuntos
Fatores Etários , Metabolismo Energético , Homeostase , Hormônios Tireóideos/administração & dosagem , Animais , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , DNA Mitocondrial/metabolismo , Ingestão de Alimentos , Hipertireoidismo/metabolismo , Hipotálamo/fisiologia , Masculino , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos F344
20.
Eur J Nutr ; 54(7): 1139-49, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25370302

RESUMO

PURPOSE: The aim of this study was to evaluate and compare the musculoskeletal effects induced by ovariectomy-related fat mass deposition against the musculoskeletal effects caused by a high-fat diet. METHODS: A group of adult female rats was ovariectomized and fed a control diet. Two additional groups were sham-operated and fed a control or a high-fat diet for 19 weeks. Distal femur and serum bone parameters were measured to assess bone metabolism. Muscle protein metabolism, mitochondrial markers and triglyceride content were evaluated in tibialis anterior. Triglyceride content was evaluated in liver. Circulating inflammatory and metabolic markers were determined. RESULTS: The high-fat diet and ovariectomy led to similar increases in fat mass (+36.6-56.7%; p < 0.05) but had different impacts on bone and muscle tissues and inflammatory markers. Consumption of the high-fat diet led to decreased bone formation (-38.4%; p < 0.05), impaired muscle mitochondrial metabolism, muscle lipotoxicity and a 20.9% increase in tibialis anterior protein synthesis rate (p < 0.05). Ovariectomy was associated with higher bone turnover as bone formation increased +72.7% (p < 0.05) and bone resorption increased +76.4% (p < 0.05), leading to bone loss, a 17.9% decrease in muscle protein synthesis rate (p < 0.05) and liver lipotoxicity. CONCLUSIONS: In female rats, high-fat diet and ovariectomy triggered similar gains in fat mass but had different impacts on bone and muscle metabolism. The ovariectomy-induced mechanisms affecting the musculoskeletal system are mainly caused by estrogen depletion, which surpasses the potential-independent effect of adiposity.


Assuntos
Adiposidade , Remodelação Óssea , Dieta Hiperlipídica/efeitos adversos , Fêmur/metabolismo , Músculo Esquelético/metabolismo , Ovariectomia/efeitos adversos , Animais , Glicemia/metabolismo , Colesterol/sangue , Feminino , Insulina/sangue , Metabolismo dos Lipídeos , Fígado/metabolismo , Tamanho do Órgão , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA