Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(13): 130602, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36206414

RESUMO

We investigate the connection between quantum resources and extractable work in quantum batteries. We demonstrate that quantum coherence in the battery or the battery-charger entanglement is a necessary resource for generating nonzero extractable work during the charging process. At the end of the charging process, we also establish a tight link of coherence and entanglement with the final extractable work: coherence naturally promotes the coherent work while coherence and entanglement inhibit the incoherent work. We also show that obtaining maximally coherent work is faster than obtaining maximally incoherent work. Examples ranging from the central-spin battery and the Tavis-Cummings battery to the spin-chain battery are given to illustrate these results.

2.
Entropy (Basel) ; 22(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33285798

RESUMO

The many-body dynamics of an electron spin-1/2 qubit coupled to a bath of nuclear spins by hyperfine interactions, as described by the central spin model in two kinds of external field, are studied in this paper. In a completely polarized bath, we use the state recurrence method to obtain the exact solution of the X X Z central spin model in a constant magnetic field and numerically analyze the influence of the disorder strength of the magnetic field on fidelity and entanglement entropy. For a constant magnetic field, the fidelity presents non-attenuating oscillations. The anisotropic parameter λ and the magnetic field strength B significantly affect the dynamic behaviour of the central spin. Unlike the periodic oscillation in the constant magnetic field, the decoherence dynamics of the central spin act like a damping oscillation in a disordered field, where the central spin undergoes a relaxation process and eventually reaches a stable state. The relaxation time of this process is affected by the disorder strength and the anisotropic parameter, where a larger anisotropic parameter or disorder strength can speed up the relaxation process. Compared with the constant magnetic field, the disordered field can regulate the decoherence over a large range, independent of the anisotropic parameter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA