Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(30): 35832-35846, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37489656

RESUMO

Biophysical and biochemical cues modulate mammalian cell behavior and phenotype simultaneously. Macrophages, indispensable cells in the innate immune system, respond to external threats such as bacterial infections and implanted devices, undergoing the classical M1 polarization to become a pro-inflammatory phenotype. In the study, lipopolysaccharide (LPS)-induced M1 polarization was examined using RAW264.7, THP-1, and primary human PBMCs on a family of artificial extracellular matrix (ECM), named colloidal self-assembled patterns (cSAPs). The results showed that cSAPs were biocompatible, which cannot induce M1 or M2 polarization. Interestingly, specific cSAPs (e.g., cSAP3) suppress the level of M1 polarization (i.e., reduced nitric oxide production, down-regulated gene expression of iNOS, IL-6, TNF-α, IL-1ß, and TLR4, and reduced proportion of CD11b+CD86+ cells). Transcriptome analysis showed that cell adhesion and cell-ECM interaction participated in the M1 polarization, and the mechano-sensitive genes such as PIEZO1 were down-regulated on the cSAP3. More interestingly, these genes were also down-regulated under LPS stimulation, indicating that cells became insensitive to the LPS. The abovementioned results indicate that the defined physicochemical cues can govern macrophage polarization. This study illustrates a potential surface design at biointerface, which is critical in tissue engineering and materiobiology. The outcome is also inspiring in ECM-mediated immune responses.


Assuntos
Sinais (Psicologia) , Lipopolissacarídeos , Animais , Humanos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fenótipo , Mamíferos/metabolismo , Canais Iônicos/genética
2.
Chem Commun (Camb) ; 53(25): 3595-3597, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28294250

RESUMO

The regeneration of cellulose from microcrystalline cellulose/DMAc·LiCl solutions through thermal induced sol-gel transition and longtime gelation resulted in the formation of wholly cellulose I with a crystallinity as high as 84.7%.


Assuntos
Acetamidas/química , Celulose/química , Cloreto de Lítio/química , Géis/química , Soluções/química , Análise Espectral Raman , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA