Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Small ; 19(52): e2304818, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635126

RESUMO

Nanozyme activity relies on surface electron transfer processes. Notably, the piezoelectric effect plays a vital role in influencing nanozyme activity by generating positive and negative charges on piezoelectric materials' surfaces. This article comprehensively reviews the potential mechanisms and practical applications of regulating nanozyme activity through the piezoelectric effect. The article first elucidates how the piezoelectric effect enables nanozymes to exhibit catalytic activity. It is highlighted that the positive and negative charges produced by this effect directly participate in redox reactions, leading to the conversion of materials from an inactive to an active state. Moreover, the piezoelectric field generated can enhance nanozyme activity by accelerating electron transfer rates or reducing binding energy between nanozymes and substrates. Practical applications of piezoelectric nanozymes are explored in the subsequent section, including water pollutant degradation, bacterial disinfection, biological detection, and tumor therapy, which demonstrate the versatile potentials of the piezoelectric effect in nanozyme applications. The review concludes by emphasizing the need for further research into the catalytic mechanisms of piezoelectric nanozymes, suggesting expanding the scope of catalytic types and exploring new application areas. Furthermore, the promising direction of synergistic catalytic therapy is discussed as an inspiring avenue for future research.


Assuntos
Desinfecção , Catálise
2.
Phys Chem Chem Phys ; 25(45): 31050-31056, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37942556

RESUMO

Two-dimensional (2D) materials with simultaneous magnetic semiconducting properties and a negative Poisson's ratio are crucial for fabricating multifunctional electronic devices. However, progress in this area has been generally constrained. Based on first-principles calculations, we engineered a 2D Ni-based oxyhalide with a honeycomb lattice structure. It was observed that the NiCl2O8 monolayer exhibits both high- and low-buckling states in its geometry, along with intrinsic magnetic semiconductor properties in its electronic structure. Importantly, we demonstrated that the magnetic ordering of the NiCl2O8 lattice is susceptible to applied strain, which resulted in a phase transition from paramagnetic to ferromagnetic under biaxial strain. The Curie temperature was also evaluated using Monte Carlo simulations within the Ising model. Additionally, our research uncovered that the 2D NiCl2O8 lattice chain displays a negative Poisson's ratio (NPR) along the z-direction. The triangular hinge structure in its centrosymmetric configuration was identified as the origin of this unique phenomenon. The coexistence of NPR and magnetic phase transition properties in the NiCl2O8 lattice makes it quite promising for applications in nanoelectronic and spintronic devices.

3.
Angew Chem Int Ed Engl ; 62(11): e202217448, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36585377

RESUMO

The deficient catalytic activity of nanozymes and insufficient endogenous H2 O2 in the tumor microenvironment (TME) are major obstacles for nanozyme-mediated catalytic tumor therapy. Since electron transfer is the basic essence of catalysis-mediated redox reactions, we explored the contributing factors of enzymatic activity based on positive and negative charges, which are experimentally and theoretically demonstrated to enhance the peroxidase (POD)-like activity of a MoS2 nanozyme. Hence, an acidic tumor microenvironment-responsive and ultrasound-mediated cascade nanocatalyst (BTO/MoS2 @CA) is presented that is made from few-layer MoS2 nanosheets grown on the surface of piezoelectric tetragonal barium titanate (T-BTO) and modified with pH-responsive cinnamaldehyde (CA). The integration of pH-responsive CA-mediated H2 O2 self-supply, ultrasound-mediated charge-enhanced enzymatic activity, and glutathione (GSH) depletion enables out-of-balance redox homeostasis, leading to effective tumor ferroptosis with minimal side effects.


Assuntos
Ferroptose , Neoplasias , Humanos , Molibdênio , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Catálise , Glutationa , Microambiente Tumoral , Peróxido de Hidrogênio
4.
Small ; 18(26): e2202485, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35633288

RESUMO

Mesenchymal stem cells (MSCs) have been recognized as one of the most promising pharmaceutical multipotent cells, and a key step for their wide application is to safely and efficiently regulate their activities. Various methods have been proposed to regulate the directional differentiation of MSCs during tissue regeneration, such as nanoparticles and metal ions. Herein, nanoscale zeolitic imidazolate framework-8 (ZIF-8), a Zn-based metal-organic framework, is modified to direct MSCs toward an osteoblast lineage. Specifically, ZIF-8 nanoparticles are encapsulated using stem cell membranes (SCMs) to mimic natural molecules and improve the biocompatibility and targeted ability toward MSCs. SCM/ZIF-8 nanoparticles adjust the sustained release of Zn2+ , and promote their specific internalization toward MSCs. The internalized SCM/ZIF-8 nanoparticles show excellent biocompatibility, and increase MSCs' osteogenic potentials. Moreover, RNA-sequencing results elucidate that the activated cyclic adenosine 3,5-monophosphate (cAMP)-PKA-CREB signaling pathway can be dominant in accelerating osteogenic differentiation. In vivo, SCM/ZIF-8 nanoparticles greatly promote the formation of new bone tissue in the femoral bone defect detected by 3D micro-CT, hematoxylin and eosin staining, and Masson staining after 4 weeks. Overall, the SCM-derived ZIF-8 nanostructures achieve the superior targeting ability, biocompatibility, and enhanced osteogenesis, providing a constructive design for tissue repair.


Assuntos
Osteogênese , Zeolitas , Diferenciação Celular , Membrana Celular , Células-Tronco , Zeolitas/química
5.
Anal Chem ; 93(32): 11123-11132, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34342969

RESUMO

Enzymes are still indispensable for bio-assaying methods in biomolecule detection by far. The unsatisfied long-term instability, high cost, and susceptibility to the physical environment of natural enzymes are obvious weak points. Here, we developed peroxidase-like heterostructured nanozyme, vertically arraying molybdenum disulfide nanosheets on a substrate layer of nitrogen-doped reduced graphene oxide (MoS2/N-rGO), with a well-pleasing stability that is characterized by the retained enzymatic activity and maintained structure after 2 years of casual storage at ambient temperatures or 80 cycles of catalytic reaction. The catalytic kinetics of the as-prepared heterostructured nanozyme was superior to some reported nanozymes and even horse radish peroxidase, which was demonstrated due to the defect-rich MoS2 with Mo and S vacancies and nitrogen-doped rGO experimentally and theoretically. The vertically heterostructured nanozyme exhibited adequate analytical performance in sensitive and quantitative detection of glucose and glutathione (GSH), with a large dynamic sensing range and extremely low limit of detection (0.02 and 0.12 µM (3σ/slope) for glucose and GSH, respectively). We hope this inspired artificial nanozyme will contribute to the future development in sensitive detection of other biomolecules in physiological conditions.


Assuntos
Grafite , Molibdênio , Catálise , Peroxidases
6.
Small ; 17(39): e2102744, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418277

RESUMO

Antibacterial photocatalytic therapy (APCT) is considered to be a potential treatment for administrating antibiotic-resistant bacteria. However, due to the low photocatalytic efficiency and weak ability to capture bacteria, it is not practically applied. In this work, an organic-metal oxide hybrid semiconductor heterostructure is fabricated for the photocatalytic generation of reactive oxygen species (ROS) to kill the drug-resistant bacteria. The organic semiconductor, perylene diimide (PDI), can self-assemble on Sn3 O4 nanosheets to form a "hook-and-loop" sticky surface that can capture bacteria, via large numbers of hydrogen bonding and π-π stacking interactions, which are not possible in inorganic semiconductors. This easy-to-fabricate hybrid semiconductor also possesses improved photocatalytic activity, which is owing to the formation of heterostructure that achieves full-spectrum absorption, and the reduction of the photocarrier recombination rate to produce more reactive oxygen species. It has a good promoting effect on the wounds of mice infected by Staphylococcus aureus. This work shows new ideas for fabricating smart full-spectrum inorganic-organic hybrid adhesive heterostructure photocatalysts for antibacterial photocatalytic therapy.


Assuntos
Antibacterianos , Semicondutores , Animais , Antibacterianos/farmacologia , Catálise , Camundongos , Espécies Reativas de Oxigênio , Staphylococcus aureus
7.
Angew Chem Int Ed Engl ; 60(48): 25328-25338, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34453387

RESUMO

Nanozyme-based catalytic tumor therapy is an emerging therapeutic method with high reactivity in response to tumor microenvironments (TMEs). To overcome the current limitations of deficient catalytic activity of nanozymes, we studied the contributing factors of enzymatic activity based on non-metallic-atom doping and irradiation. Nitrogen doping significantly enhanced the peroxidase activity of Ti-based nanozymes, which was shown experimentally and theoretically. Based on the excellent NIR-adsorption-induced surface plasmon resonance and photothermal effect, the enzymatic activity of TiN nanoparticles (NPs) was further improved under NIR laser irradiation. Hence, an acidic TME-responsive and irradiation-mediated cascade nanocatalyst (TLGp) is presented by using TiN-NP-encapsulated liposomes linked with pH-responsive PEG-modified glucose oxidase (GOx). The integration of pH-responsive GOx-mediated H2 O2 self-supply, nitrogen-doping, and irradiation-enhanced enzymatic activity of TiN NPs and mild-photothermal therapy enables an effective tumor inhibition by TLGp with minimal side effects in vivo.


Assuntos
Nanopartículas/química , Neoplasias/tratamento farmacológico , Titânio/farmacologia , Glucose Oxidase/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Raios Infravermelhos , Neoplasias/metabolismo , Neoplasias/patologia , Fotoquimioterapia , Titânio/química , Titânio/metabolismo , Microambiente Tumoral/efeitos dos fármacos
8.
Nanotechnology ; 31(14): 145101, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-31846954

RESUMO

Recently, the wide application of upconversion nanoparticles (UCNPs) in the field of bioimaging has raised the requirement of biocompatibility. Current cytocompatibility studies on UCNPs mainly focus on cancer cells; however, their potential effects on normal cells are rarely addressed. Herein, the cellular effects of a trace amount of ligand-free NaYF4:Yb/Er nanocrystals on the differentiation of rat bone mesenchymal stem cells (rBMSCs) were investigated. First, due to their excellent upconversion fluorescent properties, the cellular uptake of ligand-free NaYF4:Yb/Er nanocrystals was confirmed by confocal laser scanning microscopy, and a homogeneous cytoplasmic distribution was imaged. Second, the viability of the rBMSCs cultured with a series of concentrations of nanoparticles (0, 30, 300, and 3000 ng ml-1) was evaluated, and a dose threshold was determined. Third, the effects of ligand-free NaYF4:Yb/Er nanocrystals on the osteogenesis of the rBMSCs were intensively characterized. The alkaline phosphatase activity assay, quantitative real time polymerase chain reaction for related osteogenic genes, and immunofluorescence staining of specific biomarkers and mineral deposits demonstrated that the ligand-free NaYF4:Yb/Er nanocrystals at a proper concentration can enhance osteogenic differentiation. Finally, intracytoplasmic lipid detection showed that the adipogenic differentiation of rBMSCs might be inhibited in the presence of ligand-free NaYF4:Yb/Er nanocrystals. Meanwhile, these results showed that the effects of ligand-free NaYF4:Yb/Er nanocrystals on rBMSCs were concentration-dependent and reciprocal between osteogenic and adipogenic differentiation. This work provides new insights into the exploring the biocompatibility of UCNPs and will benefit the research community engaged in nanotechnology and biomedicine.


Assuntos
Adipogenia/efeitos dos fármacos , Érbio/química , Fluoretos/farmacologia , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Itérbio/química , Ítrio/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Fluoretos/química , Células HeLa , Humanos , Ligantes , Células-Tronco Mesenquimais/efeitos dos fármacos , Microscopia Confocal , Nanopartículas , Ratos , Coloração e Rotulagem , Ítrio/química
9.
Small ; 15(36): e1901791, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31211505

RESUMO

Although transition metal dichalcogenides (TMDs) are attractive for the next-generation nanoelectronic era due to their unique optoelectronic and electronic properties, carrier scattering during the transmission of electronic devices, and the distinct contact barrier between the metal and the semiconductors, which is caused by inevitable defects in TMDs, remain formidable challenges. To address these issues, a facile, effective, and universal patching defect approach that uses a nitrogen plasma doping protocol is developed, via which the intrinsic vacancies are repaired effectively. To reveal sulfur vacancies and the nature of the nitrogen doping effects, a high-resolution spherical aberration corrected scanning transmission electron microscopy is used, which confirms the N atoms doping in sulfur vacancies. In this study, a typical TMD material, namely tungsten disulfide, is employed to fabricate field-effect transistors (FETs) as a preliminary paradigm to demonstrate the patching defects method. This doping method endows FETs with high electrical performance and excellent contact interface properties. As a result, an electron mobility of up to 184.2 cm2 V-1 s-1 and a threshold voltage of as low as 3.8 V are realized. This study provides a valuable approach to improve the performance of electronic devices that are based on TMDs in practical electronic applications.

10.
Phys Chem Chem Phys ; 21(40): 22526-22530, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31588445

RESUMO

The exotic electronic band structures featured by Dirac cones and topological phases in two-dimensional (2D) materials are regarded as the holy grail of the next-generation electronic devices. Here we propose a 2D tungsten boride (WB4) lattice to concurrently host these interesting properties. Based on first-principles calculations, we demonstrate that in the absence of spin-orbit coupling (SOC), the mirror symmetry protects the WB4 lattice to spawn multiple Dirac bands around the Fermi level with high velocities. However, the broken mirror symmetry induces one cone to be opened with a small band gap, and gives rise to a nontrivially topological phase characterized by the non-zero Z2 topological invariant. Interestingly, topologically nontrivial states of the lattice without mirror symmetry are robust within external biaxial tension, which is confirmed from the appearance of gapless edge states in their nanoribbon structure. Our results provide a versatile platform for hosting nontrivial topological states usable for important nanoelectronic device applications.

11.
Phys Chem Chem Phys ; 18(32): 22154-9, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27443232

RESUMO

To achieve a device application of the quantum spin Hall (QSH) effect, increasing the critical temperature is crucial. A two-dimensional topological insulator (2D-TI) with a sizeable bulk band gap is one of the most promising strategies to reach this goal. Using first-principles calculations, we propose a new 2D-TI, titanium nitride iodide (TiNI) monolayer, which can be exfoliated from a bulk TiNI crystal, thanks to the weak interlayer interaction. We demonstrate that the TiNI monolayer has an inverted band structure accompanied by topologically nontrivial states characterized by a topological invariant of Z2 = 1. The band gap (∼50 meV) opened due to spin-orbit coupling (SOC) is available for achieving the QSH effect at room temperature. The band inversion and topologically nontrivial states are robust under external strain, suggesting that the 2D TiNI monolayer lattice could be a versatile platform for hosting nontrivial topological states with potential applications in 2D spintronics and computer technology.

12.
Nano Lett ; 15(12): 8122-8, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26599763

RESUMO

Investigation of light-element magnetism system is essential in fundamental and practical fields. Here, few-layer (∼3 nm) fluorinated hexagonal boron nitride (F-BN) nanocages with zigzag-edge triangular antidot defects were synthesized via a facile one-step solid-state reaction. They are free of metallic impurities confirmed by X-ray photoelectron spectroscopy, electron energy loss spectroscopy, and inductively coupled plasma atomic emission spectroscopy. Ferromagnetism is obviously observed in the BN nanocages. Saturation magnetization values of them differed by less than 7% between 5 and 300 K, indicating that the Curie temperature (Tc) was much higher than 300 K. By adjusting the concentration of triangular antidot defects and fluorine dopants, the ferromagnetic performance of BN nanocages could be effectively varied, indicating that the observed magnetism originates from triangular antidot defects and fluorination. The corresponding theoretical calculation shows that antidot defects and fluorine doping in BN lattice both favor spontaneous spin polarization and the formation of local magnetic moment, which should be responsible for long-range magnetic ordering in the sp material.

13.
Phys Chem Chem Phys ; 17(34): 21837-44, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26105981

RESUMO

Fractals are natural phenomena that exhibit a repeating pattern "exactly the same at every scale or nearly the same at different scales". Defect-free molecular fractals were assembled successfully in a recent work [Shang et al., Nature Chem., 2015, 7, 389-393]. Here, we adopted the feature of a repeating pattern in searching two-dimensional (2D) materials with intrinsic half-metallicity and high stability that are desirable for spintronics applications. Using first-principles calculations, we demonstrate that the electronic properties of fractal frameworks of carbon nitrides have stable ferromagnetism accompanied by half-metallicity, which are highly dependent on the fractal structure. The ferromagnetism increases gradually with the increase of fractal order. The Curie temperature of these metal-free systems estimated from Monte Carlo simulations is considerably higher than room temperature. The stable ferromagnetism, intrinsic half-metallicity, and fractal characteristics of spin distribution in the carbon nitride frameworks open an avenue for the design of metal-free magnetic materials with exotic properties.


Assuntos
Fractais , Nitrilas/química , Teoria Quântica , Elétrons , Fenômenos Magnéticos , Modelos Moleculares , Conformação Molecular , Método de Monte Carlo , Temperatura
14.
Phys Chem Chem Phys ; 16(42): 23286-91, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25255699

RESUMO

Covalent organic frameworks (COFs) hold great promise in several applications, such as sieves, catalytic supports and gas storage because of their unique structures and electronic properties. However, most of these metal-free COFs are nonmagnetic and cannot be directly used in spintronics. Here, based on first-principles calculations, we predict that substitutional doping of COF-5 with nitrogen and boron atoms can modify the electronic structures, inducing stable electron spin-polarization in the framework. The preferability of the different doping sites is checked. The electronic structures of the doped COF-5 are dependent on the doping sites and doping atoms, which offer high degrees of freedom to tune the electronic properties. Kagome lattices of S = 1/2 spins can be achieved in the COF-5, suggesting a promising candidate for spin-liquid materials.

15.
Angew Chem Int Ed Engl ; 53(14): 3645-9, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24591122

RESUMO

A novel, simple, and efficient method for the preparation of the fluorinated hexagonal boron nitride nanosheets (F-BNNSs) and the corresponding magnetic properties is presented. A one-step route is used to exfoliate and fluorinate the BNNSs by ammonium fluoride (NH4F) from hexagonal boron nitride (h-BN) powder. Through related instrument characterizations and theoretical calculations, we confirm that large-area and few-layer F-BNNSs were successfully produced by this method, which can be attributed to a fluorination-assisted exfoliation mechanism from the bulk h-BN in NH4F. More intriguingly, we initially verified that the as-prepared F-BNNSs exhibit ferromagnetic characteristics, which would have good potential applications in spintronic devices.

16.
Adv Healthc Mater ; 13(1): e2302023, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37742127

RESUMO

Copper (Cu), an indispensable trace element within the human body, serving as an intrinsic constituent of numerous natural enzymes, carrying out vital biological functions. Furthermore, nanomaterials exhibiting enzyme-mimicking properties, commonly known as nanozymes, possess distinct advantages over their natural enzyme counterparts, including cost-effectiveness, enhanced stability, and adjustable performance. These advantageous attributes have captivated the attention of researchers, inspiring them to devise various Cu-based nanomaterials, such as copper oxide, Cu metal-organic framework, and CuS, and explore their potential in enzymatic catalysis. This comprehensive review encapsulates the most recent advancements in Cu-based nanozymes, illuminating their applications in the realm of biochemistry. Initially, it is delved into the emulation of typical enzyme types achieved by Cu-based nanomaterials. Subsequently, the latest breakthroughs concerning Cu-based nanozymes in biochemical sensing, bacterial inhibition, cancer therapy, and neurodegenerative diseases treatment is discussed. Within this segment, it is also explored the modulation of Cu-based nanozyme activity. Finally, a visionary outlook for the future development of Cu-based nanozymes is presented.


Assuntos
Cobre , Nanoestruturas , Humanos , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Catálise
17.
J Phys Chem Lett ; 14(49): 10910-10919, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38033187

RESUMO

In organic light-emitting diodes (OLEDs), only 25% of electrically generated excitons are in a singlet state, S1, and the remaining 75% are in a triplet state, T1. In thermally activated delayed fluorescence (TADF) chromophores the transition from the nonradiative T1 state to the radiative S1 state can be thermally activated, which improves the efficiency of OLEDs. Chromophores with inverted energy ordering of S1 and T1 states, S1 < T1, are superior to TADF chromophores, thanks to the absence of an energy barrier for the transition from T1 to S1. We benchmark the performance of time-dependent density functional theory using different exchange-correlation functionals and find that scaled long-range corrected double-hybrid functionals correctly predict the inverted singlet-triplet gaps of N-substituted phenalene derivatives. We then show that the inverted energy ordering of S1 and T1 is an intrinsic property of graphitic carbon nitride flakes. A design strategy of new chromophores with inverted singlet-triplet gaps is proposed. The color of emitted light can be fine-tuned through flake size and amine substitution on flake vertices.

18.
Phytochemistry ; 205: 113482, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36309111

RESUMO

Hyperacmotone A, a polycyclic polyprenylated acylphloroglucinol (PPAP) with an unprecedented skeleton, along with five undescribed congeners and eleven reported ones, was isolated from Hypericum acmosepalum. Hyperacmotone A possesses a unique monocyclic ring skeleton based on a cyclopent-4-ene-1,3-dione acylphloroglucinol core. Their structures were elucidated by extensive analysis of HRESIMS, NMR, biogenetic pathway, and quantum-chemical calculations. In addition, hypercohone G exhibited significant protective effects on high-glucose-injured HUVECs.


Assuntos
Hypericum , Humanos , Células Endoteliais , Glucose
19.
J Phys Chem Lett ; 12(33): 7921-7927, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34384211

RESUMO

Two-dimensional van der Waals magnetic atomic crystals have provided unprecedented access to magnetic ground states due to a quantum confinement effect. Here, using first-principles calculations, we demonstrate a spin-gapless molecular ferromagnet, namely, Fe2(TCNQ)2, with superior mechanical stability and a remarkable linear Dirac cone, which can be exfoliated from its already-synthesized van der Waals crystal. Especially, Young's modulus has values of 175.28 GPa·nm along the x- and y-directions with a Poisson's ratio of 0.29, while the Curie temperature within the Ising model is considerably higher than room temperature. Furthermore, spin-orbit coupling can open a band gap at the Dirac point, leading to topologically nontrivial electronic states characterized by an integer value of the Chern number and the edge states of its nanoribbon. Our results offer versatile platforms for achieving plastic spin filtering or a quantum anomalous Hall effect with promising applications in spintronics devices.

20.
J Nanosci Nanotechnol ; 21(4): 2647-2652, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33500088

RESUMO

In this work, CeO2 nanocrystal-decorated TiO2 nanobelt for forming a CeO2@TiO2 heterostructure. CeO2 plays a dual role in improving photocatalytic activity, not only by promoting the separation and transfer of photogenerated charge carriers, but also by increasing visible light absorption of the photocatalyst as a photosensitizer. The as-prepared CeO2@TiO2 heterostructure demonstrates the performance of organic degradation and H2 production (about 17 µmol/h/g, which is about 2.5 times higher than that of pure TiO2 nanobelts). Our work provides a facile and controllable synthesis method for high performance photocatalyst, which will have potential applications in synthesis clean/solar fuel, and photocatalytic water treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA