Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nature ; 619(7968): 57-62, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316659

RESUMO

Correlation and frustration play essential roles in physics, giving rise to novel quantum phases1-6. A typical frustrated system is correlated bosons on moat bands, which could host topological orders with long-range quantum entanglement4. However, the realization of moat-band physics is still challenging. Here, we explore moat-band phenomena in shallowly inverted InAs/GaSb quantum wells, where we observe an unconventional time-reversal-symmetry breaking excitonic ground state under imbalanced electron and hole densities. We find that a large bulk gap exists, encompassing a broad range of density imbalances at zero magnetic field (B), accompanied by edge channels that resemble helical transport. Under an increasing perpendicular B, the bulk gap persists, and an anomalous plateau of Hall signals appears, which demonstrates an evolution from helical-like to chiral-like edge transport with a Hall conductance approximately equal to e2/h at 35 tesla, where e is the elementary charge and h is Planck's constant. Theoretically, we show that strong frustration from density imbalance leads to a moat band for excitons, resulting in a time-reversal-symmetry breaking excitonic topological order, which explains all our experimental observations. Our work opens up a new direction for research on topological and correlated bosonic systems in solid states beyond the framework of symmetry-protected topological phases, including but not limited to the bosonic fractional quantum Hall effect.

2.
Nat Mater ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641696

RESUMO

Symmetry breaking in quantum materials is of great importance and can lead to non-reciprocal charge transport. Topological insulators provide a unique platform to study non-reciprocal charge transport due to their surface states, especially quantum Hall states under an external magnetic field. Here we report the observation of non-reciprocal charge transport mediated by quantum Hall states in devices composed of the intrinsic topological insulator Sn-Bi1.1Sb0.9Te2S, which is attributed to asymmetric scattering between quantum Hall states and Dirac surface states. A giant non-reciprocal coefficient of up to 2.26 × 105 A-1 is found. Our work not only reveals the properties of non-reciprocal charge transport of quantum Hall states in topological insulators but also paves the way for future electronic devices.

3.
Phys Chem Chem Phys ; 26(32): 21530-21537, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39082083

RESUMO

Gallium-phosphate (GaPO4) is one of the ultra-high thermally stable piezoelectric materials with a high critical temperature of 1206 K. Here, first principles calculations with quasi-harmonic approximation are performed to study thermal and other physical properties of α-GaPO4. For the electronic structure, we focus on the electron-phonon interaction and lattice expansion effects on the temperature-dependent band gap, which plays a significant role in zero-point renormalization. Significantly, the large piezoelectric constants e11 primarily comes from intrinsic sensitivity of Ga and O sites to axial strain, while P atoms contribute little, which remains true in other quartz-like type APO4 (A = B, Al, In). Our work provides an insight into the temperature-dependent electronic and piezoelectric properties of α-GaPO4 and motivates its applications in a high temperature environment.

4.
Phys Rev Lett ; 130(3): 036202, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36763382

RESUMO

In time-reversal invariant systems, all charge Hall effects predicted so far are extrinsic effects due to the dependence on the relaxation time. We explore intrinsic Hall signatures by studying the quantum noise spectrum of the Hall current in time-reversal invariant systems, and discover intrinsic thermal Hall noises in both linear and nonlinear regimes. As the band geometric characteristics, quantum geometric tensor and Berry curvature play critical roles in various Hall effects; so do their quantum fluctuations. It is found that the thermal Hall noise in linear order of the electric field is purely intrinsic, and the second-order thermal Hall noise has both intrinsic and extrinsic contributions. In particular, the intrinsic part of the second-order thermal Hall noise is a manifestation of the quantum fluctuation of the quantum geometric tensor, which widely exists as long as Berry curvature is nonzero. These intrinsic thermal Hall noises provide direct measurable means to band geometric information, including Berry curvature related quantities and quantum fluctuation of quantum geometric tensor.

5.
Entropy (Basel) ; 24(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36554205

RESUMO

The crane-form pipeline (CFP) system is a kind of petrochemical mechanical equipment composed of multiple rotating joints and rigid pipelines. It is often used to transport chemical fluid products in the factory to tank trucks. In order to realize the automatic alignment of the CFP and the tank mouth, the trajectory tracking control problem of the CFP must be solved. Therefore, a saturated nonsingular fast terminal sliding mode (SNFTSM) algorithm is proposed in this paper. The new sliding mode manifold is constructed by the nonsingular fast terminal sliding mode (NFTSM) manifold, saturation functions and signum functions. Further, according to the sliding mode control algorithm and the dynamic model of the CFP system, the SNFTSM controller is designed. Owing to the existence of saturation functions in the controller, the stability analysis using the Lyapunov equation needs to be discussed in different cases. The results show that the system states can converge to the equilibrium point in finite time no matter where they are on the state's phase plane. However, due to the existence of signum functions, the control signal will produce chattering. In order to eliminate the chattering problem, the form of the controller is improved by using the boundary layer function. Finally, the control effect of the algorithm is verified by simulation and compared with the NTSM, NFTSM and SNTSM algorithms. From the comparison results, it is obvious that the controller based on the SNFTSM algorithm can effectively reduce the amplitude of the control torque while guaranteeing the fast convergence of the CFP system state error. Specifically, compared with the NFTSM algorithm, the maximum input torque can even be reduced by more than half.

6.
Phys Rev Lett ; 127(23): 237202, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34936802

RESUMO

The Kondo effect is a prominent quantum phenomenon describing the many-body screening of a local magnetic impurity. Here, we reveal a new type of nonmagnetic Kondo behavior generated by gauge fluctuations in strongly correlated baths. We show that a nonmagnetic bond defect not only introduces the potential scattering but also locally enhances the gauge fluctuations. The local gauge fluctuations further mediate a pseudospin exchange interaction that produces an asymmetric Kondo fixed point in low energy. The gauge-fluctuation-induced Kondo phenomena do not exhibit the characteristic resistivity behavior of the conventional Kondo effect, but display a nonmonotonous temperature dependence of thermal conductivity as well as an anisotropic pseudospin correlation. Moreover, with its origin from gauge fluctuations, the Kondo features can be regarded as promising indicators for identifying quantum spin liquids. Our work advances fundamental knowledge of novel Kondo phenomena in strongly correlated systems, which have no counterparts in thermal baths within the single-particle description.

7.
Nano Lett ; 20(1): 709-714, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31838853

RESUMO

Magnetic topological insulator, a platform for realizing quantum anomalous Hall effect, axion state, and other novel quantum transport phenomena, has attracted a lot of interest. Recently, it is proposed that MnBi2Te4 is an intrinsic magnetic topological insulator, which may overcome the disadvantages in the magnetic doped topological insulator, such as disorder. Here we report on the gate-reserved anomalous Hall effect (AHE) in the MnBi2Te4 thin film. By tuning the Fermi level using the top/bottom gate, the AHE loop gradually decreases to zero and the sign is reversed. The positive AHE exhibits distinct coercive fields compared with the negative AHE. It reaches a maximum inside the gap of the Dirac cone, and its amplitude exhibits a linear scaling with the longitudinal conductance. The positive AHE is attributed to the competition of the intrinsic Berry curvature and the extrinsic skew scattering. Its gate-controlled switching contributes a scheme for the topological spin field-effect transistors.

8.
Phys Rev Lett ; 122(8): 087001, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932570

RESUMO

We study the Kondo physics of a quantum magnetic impurity in two-dimensional topological superconductors (TSCs), either intrinsic or induced on the surface of a bulk topological insulator, using a numerical renormalization group technique. We show that, despite sharing the p+ip pairing symmetry, intrinsic and extrinsic TSCs host different physical processes that produce distinct Kondo signatures. Extrinsic TSCs harbor an unusual screening mechanism involving both electron and orbital degrees of freedom that produces rich and prominent Kondo phenomena, especially an intriguing pseudospin Kondo singlet state in the superconducting gap and a spatially anisotropic spin correlation. In sharp contrast, intrinsic TSCs support a robust impurity spin doublet ground state and an isotropic spin correlation. These findings advance fundamental knowledge of novel Kondo phenomena in TSCs and suggest experimental avenues for their detection and distinction.

9.
Nanotechnology ; 29(13): 135705, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29432212

RESUMO

We fabricated nanodevices from MoxW1-xTe2 (x = 0, 0.07, 0.35), and conducted a systematic comparative study of their electrical transport. Magnetoresistance measurements show that Mo doping can significantly suppress mobility and magnetoresistance. The results for the analysis of the two band model show that doping with Mo does not break the carrier balance. Through analysis of Shubnikov-de Haas oscillations, we found that Mo doping also has a strong suppressive effect on the quantum oscillation of the sample, and the higher the ratio of Mo, the fewer pockets were observed in our experiments. Furthermore, the effective mass of electron and hole increases gradually with increasing Mo ratio, while the corresponding quantum mobility decreases rapidly.

10.
Nano Lett ; 16(4): 2254-9, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26886761

RESUMO

van der Waals junctions of two-dimensional materials with an atomically sharp interface open up unprecedented opportunities to design and study functional heterostructures. Semiconducting transition metal dichalcogenides have shown tremendous potential for future applications due to their unique electronic properties and strong light-matter interaction. However, many important optoelectronic applications, such as broadband photodetection, are severely hindered by their limited spectral range and reduced light absorption. Here, we present a p-g-n heterostructure formed by sandwiching graphene with a gapless band structure and wide absorption spectrum in an atomically thin p-n junction to overcome these major limitations. We have successfully demonstrated a MoS2-graphene-WSe2 heterostructure for broadband photodetection in the visible to short-wavelength infrared range at room temperature that exhibits competitive device performance, including a specific detectivity of up to 10(11) Jones in the near-infrared region. Our results pave the way toward the implementation of atomically thin heterostructures for broadband and sensitive optoelectronic applications.

11.
Nano Lett ; 15(9): 5905-11, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26305696

RESUMO

A lateral heterojunction of topological insulator Sb2Te3/Bi2Te3 was successfully synthesized using a two-step solvothermal method. The two crystalline components were separated well by a sharp lattice-matched interface when the optimized procedure was used. Inspecting the heterojunction using high-resolution transmission electron microscopy showed that epitaxial growth occurred along the horizontal plane. The semiconducting temperature-resistance curve and crossjunction rectification were observed, which reveal a staggered-gap lateral heterojunction with a small junction voltage. Quantum correction from the weak antilocalization reveals the well-maintained transport of the topological surface state. This is appealing for a platform for spin filters and one-dimensional topological interface states.

12.
Phys Rev Lett ; 110(26): 266802, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23848907

RESUMO

The quantum spin Hall (QSH) effect is known to be unstable to perturbations violating time-reversal symmetry. We show that creating a narrow ferromagnetic region near the edge of a QSH sample can push one of the counterpropagating edge states to the inner boundary of the ferromagnetic region and leave the other at the outer boundary, without changing their spin polarizations and propagation directions. Since the two edge states are spatially separated into different "lanes," the QSH effect becomes robust against symmetry-breaking perturbations.

13.
Phys Rev Lett ; 107(6): 066602, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21902351

RESUMO

The quantum spin Hall (QSH) state of matter is usually considered to be protected by time-reversal (TR) symmetry. We investigate the fate of the QSH effect in the presence of the Rashba spin-orbit coupling and an exchange field, which break both inversion and TR symmetries. It is found that the QSH state characterized by nonzero spin Chern numbers C(±) = ±1 persists when the TR symmetry is broken. A topological phase transition from the TR-symmetry-broken QSH phase to a quantum anomalous Hall phase occurs at a critical exchange field, where the bulk band gap just closes. It is also shown that the transition from the TR-symmetry-broken QSH phase to an ordinary insulator state cannot happen without closing the band gap.

14.
Phys Rev Lett ; 105(5): 057202, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20867951

RESUMO

We study the spin-dependent thermoelectric transport through a single-molecule-magnet junction in the sequential tunneling regime. It is found that the intrinsic magnetic anisotropy of the single-molecule magnet can lead to gate-voltage-dependent oscillations of charge thermopower and a large violation of the Wiedeman-Franz law. More interestingly, the spin-Seebeck coefficient is shown to be greater than the charge-Seebeck coefficient, and a pure spin thermopower or/and a pure spin current can be obtained by tuning only the gate voltage. It needs neither an external magnetic field or irradiation of circularly polarized light on the molecule nor ferromagnetic leads to realize these interesting effects, indicating the powerful prospect of single-molecule-magnet applications in spintronic devices.

15.
Adv Mater ; 32(27): e1904593, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31840308

RESUMO

A topological insulator (TI) is a kind of novel material hosting a topological band structure and plenty of exotic topological quantum effects. Achieving quantized electrical transport, including the quantum Hall effect (QHE) and the quantum anomalous Hall effect (QAHE), is an important aspect of realizing quantum devices based on TI materials. Intense efforts are made in this field, in which the most essential research is based on the optimization of realistic TI materials. Herein, the TI material development process is reviewed, focusing on the realization of quantized transport. Especially, for QHE, the strategies to increase the surface transport ratio and decrease the threshold magnetic field of QHE are examined. For QAHE, the evolution history of magnetic TIs is introduced, and the recently discovered magnetic TI candidates with intrinsic magnetizations are discussed in detail. Moreover, future research perspectives on these novel topological quantum effects are also evaluated.

16.
Nat Nanotechnol ; 15(12): 1019-1024, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33046843

RESUMO

Electrets are dielectric materials that have a quasi-permanent dipole polarization. A single-molecule electret is a long-sought-after nanoscale component because it can lead to miniaturized non-volatile memory storage devices. The signature of a single-molecule electret is the switching between two electric dipole states by an external electric field. The existence of these electrets has remained controversial because of the poor electric dipole stability in single molecules. Here we report the observation of a gate-controlled switching between two electronic states in Gd@C82. The encapsulated Gd atom forms a charged centre that sets up two single-electron transport channels. A gate voltage of ±11 V (corresponding to a coercive field of ~50 mV Å-1) switches the system between the two transport channels with a ferroelectricity-like hysteresis loop. Using density functional theory, we assign the two states to two different permanent electrical dipole orientations generated from the Gd atom being trapped at two different sites inside the C82 cage. The two dipole states are separated by a transition energy barrier of 11 meV. The conductance switching is then attributed to the electric-field-driven reorientation of the individual dipole, as the coercive field provides the necessary energy to overcome the transition barrier.

17.
Nat Commun ; 10(1): 210, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643119

RESUMO

Excitonic insulators are insulating states formed by the coherent condensation of electron and hole pairs into BCS-like states. Isotropic spatial wave functions are commonly considered for excitonic condensates since the attractive interaction among the electrons and the holes in semiconductors usually leads to s-wave excitons. Here, we propose a new type of excitonic insulator that exhibits order parameter with p + ip symmetry and is characterized by a chiral Chern number Cc = 1/2. This state displays the parity anomaly, which results in two novel topological properties: fractionalized excitations with e/2 charge at defects and a spontaneous in-plane magnetization. The topological insulator surface state is a promising platform to realize the topological excitonic insulator. With the spin-momentum locking, the interband optical pumping can renormalize the surface electrons and drive the system towards the proposed p + ip instability.

18.
Nat Commun ; 10(1): 5723, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844140

RESUMO

Excitons are spin integer particles that are predicted to condense into a coherent quantum state at sufficiently low temperature. Here by using photocurrent imaging we report experimental evidence of formation and efficient transport of non-equilibrium excitons in Bi2-xSbxSe3 nanoribbons. The photocurrent distributions are independent of electric field, indicating that photoexcited electrons and holes form excitons. Remarkably, these excitons can transport over hundreds of micrometers along the topological insulator (TI) nanoribbons before recombination at up to 40 K. The macroscopic transport distance, combined with short carrier lifetime obtained from transient photocurrent measurements, indicates an exciton diffusion coefficient at least 36 m2 s-1, which corresponds to a mobility of 6 × 104 m2 V-1 s-1 at 7 K and is four order of magnitude higher than the value reported for free carriers in TIs. The observation of highly dissipationless exciton transport implies the formation of superfluid-like exciton condensate at the surface of TIs.

19.
Nat Commun ; 10(1): 4469, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578337

RESUMO

Magnetic topological insulators (MTIs) offer a combination of topologically nontrivial characteristics and magnetic order and show promise in terms of potentially interesting physical phenomena such as the quantum anomalous Hall (QAH) effect and topological axion insulating states. However, the understanding of their properties and potential applications have been limited due to a lack of suitable candidates for MTIs. Here, we grow two-dimensional single crystals of Mn(SbxBi(1-x))2Te4 bulk and exfoliate them into thin flakes in order to search for intrinsic MTIs. We perform angle-resolved photoemission spectroscopy, low-temperature transport measurements, and first-principles calculations to investigate the band structure, transport properties, and magnetism of this family of materials, as well as the evolution of their topological properties. We find that there exists an optimized MTI zone in the Mn(SbxBi(1-x))2Te4 phase diagram, which could possibly host a high-temperature QAH phase, offering a promising avenue for new device applications.

20.
Sci Rep ; 8(1): 7436, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743631

RESUMO

Spin-valley and electronic band topological properties have been extensively explored in quantum material science, yet their coexistence has rarely been realized in stoichiometric two-dimensional (2D) materials. We theoretically predict the quantum spin Hall effect (QSHE) in the hydrofluorinated bismuth (Bi2HF) nanosheet where the hydrogen (H) and fluorine (F) atoms are functionalized on opposite sides of bismuth (Bi) atomic monolayer. Such Bi2HF nanosheet is found to be a 2D topological insulator with a giant band gap of 0.97 eV which might host room temperature QSHE. The atomistic structure of Bi2HF nanosheet is noncentrosymmetric and the spontaneous polarization arises from the hydrofluorinated morphology. The phonon spectrum and ab initio molecular dynamic (AIMD) calculations reveal that the proposed Bi2HF nanosheet is dynamically and thermally stable. The inversion symmetry breaking together with spin-orbit coupling (SOC) leads to the coupling between spin and valley in Bi2HF nanosheet. The emerging valley-dependent properties and the interplay between intrinsic dipole and SOC are investigated using first-principles calculations combined with an effective Hamiltonian model. The topological invariant of the Bi2HF nanosheet is confirmed by using Wilson loop method and the calculated helical metallic edge states are shown to host QSHE. The Bi2HF nanosheet is therefore a promising platform to realize room temperature QSHE and valley spintronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA