Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Org Chem ; 88(2): 818-827, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36660857

RESUMO

We have developed a formal [4+2] cycloaddition reaction of N-fluorobenzamides and maleic anhydride in the presence of CuI and LiOH, and a series of fluorescent 1-amino-2,3-naphthalic anhydrides were produced in good yields. This reaction proceeded via a multistep process involving nitrogen-centered radical generation, 1,5-hydrogen atom transfer, and benzylic radical addition to the amide carbonyl oxygen to generate an N-(tert-butyl) isobenzofuran-1(3H)-imine intermediate, which isomerized to an N-(tert-butyl) isobenzofuran-1-amine via deprotonation and protonation with the aid of LiOH; finally, the amine underwent a [4+2] cycloaddition reaction with maleic anhydride to give the 1-amino-2,3-naphthalic anhydride product upon dehydrating aromatization. Notably, the corresponding naphthalic anhydride products could be transformed into a diverse array of naphthalimides. Both the naphthalic anhydrides and the naphthalimides exhibited similar fluorescent features.

2.
Sensors (Basel) ; 22(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35632336

RESUMO

To stabilize the detection signal of palladium-based hydrogen sensors on paper substrates, a graphite intermediate layer was painted on the surface of paper. The graphite-on-paper (GOP) substrate offers advantages such as good thermo-electrical conductivity, low cost, and uncomplicated preparation technology. Quasi-1-dimensional palladium (Pd) thin films with 8 nm and 60 nm thicknesses were deposited on the GOP substrates using the vacuum evaporation technique. Thanks to the unique properties of the GOP substrate, a continuous Pd microfiber network structure appeared after deposition of the ultra-thin Pd film. Additionally, the sensing performance of the palladium-based hydrogen sensor was not affected, whether using GOP or paper substrate at 25 °C. Surprisingly, heating-induced loss of sensitivity was restrained due to the increased electrical conductivity of the GOP substrate at 50 °C.

3.
Angew Chem Int Ed Engl ; 60(21): 11858-11867, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33533087

RESUMO

Correlated cell migration in fibrous extracellular matrix (ECM) is important in many biological processes. During migration, cells can remodel the ECM, leading to the formation of mesoscale structures such as fiber bundles. However, how such mesoscale structures regulate correlated single-cells migration remains to be elucidated. Here, using a quasi-3D in vitro model, we investigate how collagen fiber bundles are dynamically re-organized and guide cell migration. By combining laser ablation technique with 3D tracking and active-particle simulations, we definitively show that only the re-organized fiber bundles that carry significant tensile forces can guide strongly correlated cell migration, providing for the first time a direct experimental evidence supporting that matrix-transmitted long-range forces can regulate cell migration and self-organization. This force regulation mechanism can provide new insights for studies on cellular dynamics, fabrication or selection of biomedical materials in tissue repairing, and many other biomedical applications.


Assuntos
Movimento Celular/fisiologia , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Mecanotransdução Celular/fisiologia , Actinas/metabolismo , Animais , Colágeno/química , Cães , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Células Madin Darby de Rim Canino , Miosinas/antagonistas & inibidores , Paxilina/metabolismo , Resistência à Tração
4.
Sensors (Basel) ; 18(5)2018 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-29734789

RESUMO

In the present work, centrifugal deposited Au-Pd core-shell nanoparticle (NP) film was proposed for the room-temperature optical detection of hydrogen gas. The size dimension of 44, 48, 54, and 62 nm Au-Pd core-shell nanocubes with 40 nm Au core were synthesized following a solution-based seed-mediated growth method. Compared to a pure Pd NP, this core-shell structure with an inert Au core could decrease the H diffusion length in the Pd shell. Through a modified centrifugal deposition process, continues film samples with different core-shell NPs were deposited on 10 mm diameter quartz substrates. Under various hydrogen concentration conditions, the optical response properties of these samples were characterized by an intensity-based optical fiber bundle sensor. Experimental results show that the continues film that was composed of 62 nm Au-Pd core-shell NPs has achieved a stable and repeatable reflectance response with low zero drift in the range of 4 to 0.1% hydrogen after a stress relaxation mechanism at first few loading/unloading cycles. Because of the short H diffusion length due to the thinner Pd shell, the film sample composed of 44 nm Au-Pd NPs has achieved a dramatically decreased response/recovery time to 4 s/30 s. The experiments present the promising prospect of this simple method to fabricate optical hydrogen sensors with controllable high sensitivity and response rate at low cost.

5.
Polymers (Basel) ; 16(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891394

RESUMO

Touch serves as an important medium for human-environment interaction. The piezoresistive tactile sensor has attracted much attention due to its convenient technology, simple principle, and convenient signal acquisition and analysis. In this paper, conductive beads-on-string polyvinyl alcohol (PVA)/polyaniline doped with dodecyl benzene sulfonic acid (PANI-DBSA) nanofibers were fabricated via the electrospinning technique. Due to the special nanostructure of PVA-coated PANI-DBSA, the tactile sensor presented a wide measuring range of 12 Pa-121 kPa and appreciable sensitivity of 8.576 kPa-1 at 12 Pa~484 Pa. In addition, the response time and recovery time of the sensor were approximately 500 ms, demonstrating promising prospects in the field of tactile sensing for active upper limb prostheses.

6.
J Phys Condens Matter ; 36(19)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38286006

RESUMO

Interfacial Dzyaloshinskii-Moriya interaction (i-DMI) exists in the film materials with inversion symmetry breaking, which can stabilize a series of nonlinear spin structures and control their chirality, such as Néel-type domain wall, magnetic skyrmion and spin spiral. In addition, the strength and chirality of i-DMI are directly related to the dynamic behavior of these nonlinear spin structures. Therefore, regulating the strength and chirality of i-DMI not only has an important scientific significance for enriching spintronics and topological physics, but also has a significant practical value for constructing a new generation of memorizer, logic gate, and brain-like devices with low-power. This review summarizes the research progress on the regulation of i-DMI in ferromagnetic films and provides some prospects for future research.

7.
Research (Wash D C) ; 7: 0356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716471

RESUMO

Due to the breaking of time-reversal and parity symmetries and the presence of non-conservative microscopic interactions, active spinner fluids and solids respectively exhibit nondissipative odd viscosity and nonstorage odd elasticity, engendering phenomena unattainable in traditional passive or active systems. Here, we study the effects of odd viscosity and elasticity on phase behaviors of active spinner systems. We find the spinner fluid under a simple shear experiences an anisotropic gas-liquid phase separation driven by the odd-viscosity stress. This phase separation exhibits equilibrium-like behavior, with both binodal-like and spinodal curves and critical point. However, the formed dense liquid phase is unstable, since the odd elasticity instantly takes over the odd viscosity to condense the liquid into a solid-like phase. The unusual phase behavior essentially arises from the competition between thermal fluctuations and the odd response-induced effective attraction. Our results demonstrate that the cooperation of odd viscosity and elasticity can lead to exotic phase behavior, revealing their fundamental roles in phase transition.

8.
Small Methods ; : e2400589, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934342

RESUMO

The evolutions of chip thermal management and micro energy harvesting put forward urgent need for micro thermoelectric devices. Nevertheless, low-performance thermoelectric thick films as well as the complicated precision cutting process for hundred-micron thermoelectric legs still remain the bottleneck hindering the advancement of micro thermoelectric devices. In this work, an innovative direct melt-calendaring manufacturing technology is first proposed with specially designed and assembled equipment, that enables direct, rapid, and cost-effective continuous manufacturing of Bi2Te3-based films with thickness of hundred microns. Based on the strain engineering with external glass coating confinement and controlled calendaring deformation degree, enhanced thermoelectric performance has been achieved for (Bi,Sb)2Te3 thick films with highly textured nanocrystals, which can promote carrier mobility over 182.6 cm2 V-1 s-1 and bring out a record-high zT value of 0.96 and 1.16 for n-type and p-type (Bi,Sb)2Te3 thick films, respectively. The nanoscale interfaces also further improve the mechanical strength with excellent elastic modules (over 42.0 GPa) and hardness (over 1.7 GPa), even superior to the commercial zone-melting ingots and comparable to the hot-extrusion (Bi,Sb)2Te3 alloys. This new fabrication strategy is versatile to a wide range of inorganic thermoelectric thick films, which lays a solid foundation for the development of micro thermoelectric devices.

9.
Nat Commun ; 15(1): 3870, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719875

RESUMO

Micro-thermoelectric coolers are emerging as a promising solution for high-density cooling applications in confined spaces. Unlike thin-film micro-thermoelectric coolers with high cooling flux at the expense of cooling temperature difference due to very short thermoelectric legs, thick-film micro-thermoelectric coolers can achieve better comprehensive cooling performance. However, they still face significant challenges in both material preparation and device integration. Herein, we propose a design strategy which combines Bi2Te3-based thick film prepared by powder direct molding with micro-thermoelectric cooler integrated via phase-change batch transfer. Accurate thickness control and relatively high thermoelectric performance can be achieved for the thick film, and the high-density-integrated thick-film micro-thermoelectric cooler exhibits excellent performance with maximum cooling temperature difference of 40.6 K and maximum cooling flux of 56.5 W·cm-2 at room temperature. The micro-thermoelectric cooler also shows high temperature control accuracy (0.01 K) and reliability (over 30000 cooling cycles). Moreover, the device demonstrates remarkable capacity in power generation with normalized power density up to 214.0 µW · cm-2 · K-2. This study provides a general and scalable route for developing high-performance thick-film micro-thermoelectric cooler, benefiting widespread applications in thermal management of microsystems.

10.
Zhonghua Nan Ke Xue ; 19(1): 82-5, 2013 Jan.
Artigo em Zh | MEDLINE | ID: mdl-23469669

RESUMO

Erectile dysfunction (ED) is a common problem, for which PDE5 inhibitors (PDE5I) represent the first line therapy at present and have a success rate of approximately 80%. Refractory ED, which refers to ED in some patients with chronic diseases such as diabetes mellitus and cardiovascular diseases or in those treated by radical prostatectomy, receives little benefit from PDE5I alone. Apart from the NO-cGMP pathway, the processes of erection and ED involve several signaling pathways, such as RhoA/Rho kinase, H2S, CO, etc. The complicated signaling network contributes to the pathogenesis of refractory ED. PDE5I-based alternative therapy and combined therapy may increase the success rate of its treatment. This article outlines the advances in the studies of refractory ED that fails to respond to PDE5I.


Assuntos
Disfunção Erétil/tratamento farmacológico , Inibidores da Fosfodiesterase 5/uso terapêutico , Humanos , Masculino
11.
Research (Wash D C) ; 6: 0063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36939442

RESUMO

Microglia are resident macrophage cells in the central nervous system that search for pathogens or abnormal neural activities and migrate to resolve the issues. The effective search and targeted motion of macrophages mean dearly to maintaining a healthy brain, yet little is known about their migration dynamics. In this work, we study microglial motion with and without the presence of external mechanostimuli. We discover that the cells are promptly attracted by the applied forces (i.e., mechanotaxis), which is a tactic behavior as yet unconfirmed in microglia. Meanwhile, in both the explorative and the targeted migration, microglia display dynamics that is strikingly analogous to bacterial run-and-tumble motion. A closer examination reveals that microglial run-and-tumble is more sophisticated, e.g., they display a short-term memory when tumbling and rely on active steering during runs to achieve mechanotaxis, probably via the responses of mechanosensitive ion channels. These differences reflect the sharp contrast between microglia and bacteria cells (eukaryotes vs. prokaryotes) and their environments (compact tissue vs. fluid). Further analyses suggest that the reported migration dynamics has an optimal search efficiency and is shared among a subset of immune cells (human monocyte and macrophage). This work reveals a fruitful analogy between the locomotion of 2 remote systems and provides a framework for studying immune cells exploring complex environments.

12.
PLoS One ; 18(5): e0286138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37253032

RESUMO

Magnetic reconnection is a process that can rapidly convert magnetic field energy into plasma thermal energy and kinetic energy, and it is also an important energy conversion mechanism in space physics, astrophysics and plasma physics. Research related to analytical solutions for time-dependent three-dimensional magnetic reconnection is extremely difficult. For decades, several mathematical descriptions have been developed regarding different reconnection mechanisms, in which the equations based on magnetohydrodynamics theory outside the reconnection diffusion region are widely accepted. However, the equation set cannot be analytically solved unless specified constraints are imposed or the equations are reduced. Based on previous analytical methods for kinematic stationary reconnection, here the analytical solutions for time-dependent kinematic three-dimensional magnetic reconnection are discussed. In contrast to the counter-rotating plasma flows that existed in steady-state reconnection, it is found that spiral plasma flows, which have never been reported before, can be generated if the magnetic field changes exponentially with time. These analyses reveal new scenarios for time-dependent kinematic three-dimensional magnetic reconnection, and the deduced analytical solutions could improve our understanding of the dynamics involved in reconnection processes, as well as the interactions between the magnetic field and plasma flows during magnetic reconnection.


Assuntos
Campos Magnéticos , Física , Fenômenos Biomecânicos , Fenômenos Físicos , Difusão
13.
Materials (Basel) ; 15(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35454642

RESUMO

In-plane elastic and interlaminar properties of composite laminates are commonly obtained through separate experiments. In this paper, a simultaneous identification method for both properties using a single experiment is proposed. The mechanical properties of laminates were treated as uncertainties and Bayesian inference was employed with measured strain-load curves in compression tests of laminates with embedded delamination. The strain-load curves were separated into two stages: the pre-delamination stage and the post-delamination stage. Sensitivity analysis was carried out to determine the critical properties at different stages, in order to alleviate the ill-posed problem in inference. Results showed that the in-plane Young's modulus and shear modulus in elastic properties are dominant in the pre-delamination stage, and the interlaminar strength and type I fracture toughness in interlaminar properties are dominant in the post-delamination stage. Five times of property identification were carried out; the maximum coefficient of variation of identified properties was less than 1.11%, and the maximum error between the mean values of the identified properties and the ones from standard experiments was less than 5.44%. The proposed method can reduce time and cost in obtaining multiple mechanical properties of laminates.

14.
Quant Imaging Med Surg ; 11(12): 4820-4834, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34888192

RESUMO

BACKGROUND: Cone-beam computed tomography (CBCT) plays a key role in image-guided radiotherapy (IGRT), however its poor image quality limited its clinical application. In this study, we developed a deep-learning based approach to translate CBCT image to synthetic CT (sCT) image that preserves both CT image quality and CBCT anatomical structures. METHODS: A novel synthetic CT generative adversarial network (sCTGAN) was proposed for CBCT-to-CT translation via disentangled representation. The approach of disentangled representation was employed to extract the anatomical information shared by CBCT and CT image domains. Both on-board CBCT and planning CT of 40 patients were used for network learning and those of another 12 patients were used for testing. Accuracy of our network was quantitatively evaluated using a series of statistical metrics, including the peak signal-to-noise ratio (PSNR), mean structural similarity index (SSIM), mean absolute error (MAE), and root-mean-square error (RMSE). Effectiveness of our network was compared against three state-of-the-art CycleGAN-based methods. RESULTS: The PSNR, SSIM, MAE, and RMSE between sCT generated by sCTGAN and deformed planning CT (dpCT) were 34.12 dB, 0.86, 32.70 HU, and 60.53 HU, while the corresponding values between original CBCT and dpCT were 28.67 dB, 0.64, 70.56 HU, and 112.13 HU. The RMSE (60.53±14.38 HU) of sCT generated by sCTGAN was less than that of sCT generated by all the three comparing methods (72.40±16.03 HU by CycleGAN, 71.60±15.09 HU by CycleGAN-Unet512, 64.93±14.33 HU by CycleGAN-AG). CONCLUSIONS: The sCT generated by our sCTGAN network was closer to the ground truth (dpCT), in comparison to all the three comparing CycleGAN-based methods. It provides an effective way to generate high-quality sCT which has a wide application in IGRT and adaptive radiotherapy.

17.
Synth Syst Biotechnol ; 3(3): 196-203, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30345405

RESUMO

Due to the abuse of antibiotics, antibiotic residues can be detected in both natural environment and various industrial products, posing threat to the environment and human health. Here we describe the design and implementation of an engineered Escherichia coli capable of degrading tetracycline (Tc)-one of the commonly used antibiotics once on humans and now on poultry, cattle and fisheries. A Tc-degrading enzyme, TetX, from the obligate anaerobe Bacteroides fragilis was cloned and recombinantly expressed in E. coli and fully characterized, including its K m and k cat value. We quantitatively evaluated its activity both in vitro and in vivo by UV-Vis spectrometer and LC-MS. Moreover, we used a tetracycline inducible amplification circuit including T7 RNA polymerase and its specific promoter PT7 to enhance the expression level of TetX, and studied the dose-response of TetX under different inducer concentrations. Since the deployment of genetically modified organisms (GMOs) outside laboratory brings about safety concerns, it is necessary to explore the possibility of integrating a kill-switch. Toxin-Antitoxin (TA) systems were used to construct a mutually dependent host-plasmid platform and biocontainment systems in various academic and industrious situations. We selected nine TA systems from various bacteria strains and measured the toxicity of toxins (T) and the detoxifying activity of cognate antitoxins (A) to validate their potential to be used to build a kill-switch. These results prove the possibility of using engineered microorganisms to tackle antibiotic residues in environment efficiently and safely.

18.
Sci Rep ; 7(1): 3198, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28600559

RESUMO

Pterospermum kingtungense C.Y.Wu ex Hsue is a typical tree species living in the relatively adverse limestone habitat. Due to its excellent wood quality and big size, it is an important timber resource which caused its endangered. We firstly provide the data resources by reporting an annotated transcriptome assembly. 203 million unique Illumina RNA-seq reads were produced with totally 50,333 transcripts, among which 48,778 transcripts were annotated. By a global comparison of homology between P. kingtungense and cacao, we identified 9,507 single copy orthologues and 990 P. kingtungense specific genes. GO enrichment analyses indicate that P. kingtungense specific genes are enriched in defense response, implying potential adaptation to limestone environment. As to cell compartment, the genes are enriched in thylakoid component. Consistently, KEGG enrichment indicates that genes are enriched in photosynthesis. In addition, we identified two genes under positive selection in P. kingtungense species. These results suggest that P. kingtungense have strong photosynthetic capacity, which related to vegetation growth. Our work provides the genomic resources of a limestone specific tree with economic importance to local society and suggests possible mechanism on its characteristics on the limestone adaption and excellent wood properties, which will be important for its conservation and sustainable utilization.


Assuntos
Malvaceae/genética , Fotossíntese/genética , Transcriptoma/genética , Cacau/genética , Cacau/crescimento & desenvolvimento , Carbonato de Cálcio/toxicidade , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Malvaceae/química , Malvaceae/crescimento & desenvolvimento , Anotação de Sequência Molecular
19.
Hortic Res ; 2: 15056, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26640697

RESUMO

Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. 'Cayenne', 'Spanish', 'Queen') was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops.

20.
Hortic Res ; 2: 14065, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26504559

RESUMO

Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in 50 longan germplasm accessions, including cultivated varieties and wild germplasm; and designated 25 SNP markers that unambiguously identified all tested longan varieties with high statistical rigor (P<0.0001). Multiple trees from the same clone were verified and off-type trees were identified. Diversity analysis revealed genetic relationships among analyzed accessions. Cultivated varieties differed significantly from wild populations (F st=0.300; P<0.001), demonstrating untapped genetic diversity for germplasm conservation and utilization. Within cultivated varieties, apparent differences between varieties from China and those from Thailand and Hawaii indicated geographic patterns of genetic differentiation. These SNP markers provide a powerful tool to manage longan genetic resources and breeding, with accurate and efficient genotype identification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA