Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 31(25): 255401, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32126531

RESUMO

The oxide shell of Al nanoparticles (Al NPs) prevents further reaction of Al/CuO nanothermites which reduces Al utilization efficiency and the performance of the nanothermites. However, the performance of Al/CuO nanothermites can be improved by adding ammonium perchlorate (AP). In this work, in order to confirm and explain the enhancement mechanism of AP on Al/CuO nanothermites, Al/CuO/NC and Al/CuO/NC/AP composites were prepared using the electrospray method. The composites were characterized by differential scanning calorimetry/thermogravimetric, x-ray diffraction, scanning electron microscope and transmission electron microscopy. Meanwhile, the ignition temperature and the time-resolved analysis of the rapid pyrolysis chemistry of the composites were tested using T-jump and time-of-flight mass spectrometry, respectively. The results show that Al NPs of Al/CuO/NC/AP composite are hollow compared to Al/CuO/NC composite after reaction. Al NPs and CuO NPs reduce the decomposition temperature and facilitate the rapid decomposition of the AP, and the decomposition products of the AP can destroy the oxidation layer of Al NPs. This result facilitates the further conduct of the thermite reaction. A mutually reinforcing relationship exists between the Al/CuO/NC composites and AP.

2.
Nanotechnology ; 31(19): 195712, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31978923

RESUMO

Nanothermites composed of nano-fuels and oxidants are attractive energetic materials, which have potential applications in microscale energy-demanding systems. Herein, nano-Al/CuO with nitrocellulose (NC) binder have been bottom-up assembled on semiconductor bridge (SCB) chip by electrospray, from nanoparticles to three-dimensional (3D) deposited structure. The morphological and compositional characterization confirms the constituents in Al/CuO@NC are homogeneously mixed at nano scale and the 3D structure at micro scale is tunable. The as-deposited Al/CuO@NC exhibits excellent energy output and superior chemical reactivity. Specifically, the heat release of Al/CuO@NC (1179.5 J g-1) is higher than that of random mixed Al/CuO (730.9 J g-1). Benefiting from outstanding exothermic properties, the material integrated with SCB initiator chip (Al/CuO@NC-SCB) for potential ignition application was investigated. The Al/CuO@NC-SCB micro energetic initiator can be functioned rapidly (with delay time of 2.8 µs) and exhibits superb ignition performances with violent explosion process, high combustion temperature (4636 °C) and successful ignition of B/KNO3 propellant, in comparison to SCB initiator. The strategy provides promising route to introduce nano reactive particles into various functional energy-demanding systems for potential energetic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA