Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Cell ; 83(14): 2493-2508.e5, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37343553

RESUMO

Type IV CRISPR-Cas systems, which are primarily found on plasmids and exhibit a strong plasmid-targeting preference, are the only one of the six known CRISPR-Cas types for which the mechanistic details of their function remain unknown. Here, we provide high-resolution functional snapshots of type IV-A Csf complexes before and after target dsDNA binding, either in the absence or presence of CasDinG, revealing the mechanisms underlying CsfcrRNA complex assembly, "DWN" PAM-dependent dsDNA targeting, R-loop formation, and CasDinG recruitment. Furthermore, we establish that CasDinG, a signature DinG family helicase, harbors ssDNA-stimulated ATPase activity and ATP-dependent 5'-3' DNA helicase activity. In addition, we show that CasDinG unwinds the non-target strand (NTS) and target strand (TS) of target dsDNA from the CsfcrRNA complex. These molecular details advance our mechanistic understanding of type IV-A CRISPR-Csf function and should enable Csf complexes to be harnessed as genome-engineering tools for biotechnological applications.


Assuntos
Proteínas Associadas a CRISPR , DNA , DNA/genética , DNA de Cadeia Simples/genética , Sistemas CRISPR-Cas , Proteínas Associadas a CRISPR/metabolismo
2.
Mol Cell ; 82(6): 1186-1198.e6, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35202575

RESUMO

Epigenetic evolution occurs over million-year timescales in Cryptococcus neoformans and is mediated by DNMT5, the first maintenance type cytosine methyltransferase identified in the fungal or protist kingdoms, the first dependent on adenosine triphosphate (ATP), and the most hemimethyl-DNA-specific enzyme known. To understand these novel properties, we solved cryo-EM structures of CnDNMT5 in three states. These studies reveal an elaborate allosteric cascade in which hemimethylated DNA binding first activates the SNF2 ATPase domain by a large rigid body rotation while the target cytosine partially flips out of the DNA duplex. ATP binding then triggers striking structural reconfigurations of the methyltransferase catalytic pocket to enable cofactor binding, completion of base flipping, and catalysis. Bound unmethylated DNA does not open the catalytic pocket and is instead ejected upon ATP binding, driving high fidelity. This unprecedented chaperone-like, enzyme-remodeling role of the SNF2 ATPase domain illuminates how energy is used to enable faithful epigenetic memory.


Assuntos
Trifosfato de Adenosina , Epigenoma , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Citosina/química , DNA/genética , Metilação de DNA , Metiltransferases/genética
3.
Mol Cell ; 73(2): 264-277.e5, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30503773

RESUMO

Type ΙΙΙ CRISPR-Cas systems provide robust immunity against foreign RNA and DNA by sequence-specific RNase and target RNA-activated sequence-nonspecific DNase and RNase activities. We report on cryo-EM structures of Thermococcus onnurineus CsmcrRNA binary, CsmcrRNA-target RNA and CsmcrRNA-target RNAanti-tag ternary complexes in the 3.1 Å range. The topological features of the crRNA 5'-repeat tag explains the 5'-ruler mechanism for defining target cleavage sites, with accessibility of positions -2 to -5 within the 5'-repeat serving as sensors for avoidance of autoimmunity. The Csm3 thumb elements introduce periodic kinks in the crRNA-target RNA duplex, facilitating cleavage of the target RNA with 6-nt periodicity. Key Glu residues within a Csm1 loop segment of CsmcrRNA adopt a proposed autoinhibitory conformation suggestive of DNase activity regulation. These structural findings, complemented by mutational studies of key intermolecular contacts, provide insights into CsmcrRNA complex assembly, mechanisms underlying RNA targeting and site-specific periodic cleavage, regulation of DNase cleavage activity, and autoimmunity suppression.


Assuntos
Autoimunidade , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Desoxirribonucleases/metabolismo , Estabilidade de RNA , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/ultraestrutura , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/imunologia , Proteínas Associadas a CRISPR/ultraestrutura , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/imunologia , Microscopia Crioeletrônica , Desoxirribonucleases/genética , Desoxirribonucleases/imunologia , Desoxirribonucleases/ultraestrutura , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/imunologia , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Complexos Multiproteicos , Mutação , Conformação de Ácido Nucleico , Conformação Proteica , RNA Bacteriano/genética , RNA Bacteriano/imunologia , RNA Bacteriano/ultraestrutura , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/ultraestrutura , Relação Estrutura-Atividade , Thermococcus/enzimologia , Thermococcus/genética , Thermococcus/imunologia
4.
Nature ; 559(7715): 580-584, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29995857

RESUMO

The mitochondrial calcium uniporter (MCU) is a highly selective calcium channel and a major route of calcium entry into mitochondria. How the channel catalyses ion permeation and achieves ion selectivity are not well understood, partly because MCU is thought to have a distinct architecture in comparison to other cellular channels. Here we report cryo-electron microscopy reconstructions of MCU channels from zebrafish and Cyphellophora europaea at 8.5 Å and 3.2 Å resolutions, respectively. In contrast to a previous report of pentameric stoichiometry for MCU, both channels are tetramers. The atomic model of C. europaea MCU shows that a conserved WDXXEP signature sequence forms the selectivity filter, in which calcium ions are arranged in single file. Coiled-coil legs connect the pore to N-terminal domains in the mitochondrial matrix. In C. europaea MCU, the N-terminal domains assemble as a dimer of dimers; in zebrafish MCU, they form an asymmetric crescent. The structures define principles that underlie ion permeation and calcium selectivity in this unusual channel.


Assuntos
Canais de Cálcio/química , Canais de Cálcio/ultraestrutura , Microscopia Crioeletrônica , Phialophora/química , Peixe-Zebra , Animais , Caenorhabditis elegans/química , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Ativação do Canal Iônico , Modelos Moleculares , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
5.
Nucleic Acids Res ; 47(14): 7648-7665, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31251801

RESUMO

Mitochondria are essential molecular machinery for the maintenance of cellular energy supply by the oxidative phosphorylation system (OXPHOS). Mitochondrial transcription factor B1 (TFB1M) is a dimethyltransferase that maintains mitochondrial homeostasis by catalyzing dimethylation of two adjacent adenines located in helix45 (h45) of 12S rRNA. This m62A modification is indispensable for the assembly and maturation of human mitochondrial ribosomes. However, both the mechanism of TFB1M catalysis and the precise function of TFB1M in mitochondrial homeostasis are unknown. Here we report the crystal structures of a ternary complex of human (hs) TFB1M-h45-S-adenosyl-methionine and a binary complex hsTFB1M-h45. The structures revealed a distinct mode of hsTFB1M interaction with its rRNA substrate and with the initial enzymatic state involved in m62A modification. The suppression of hsTFB1M protein level or the overexpression of inactive hsTFB1M mutants resulted in decreased ATP production and reduced expression of components of the mitochondrial OXPHOS without affecting transcription of the corresponding genes and their localization to the mitochondria. Therefore, hsTFB1M regulated the translation of mitochondrial genes rather than their transcription via m62A modification in h45.


Assuntos
Proteínas de Ligação a DNA/genética , Genes Mitocondriais/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Biossíntese de Proteínas , RNA Ribossômico/genética , Fatores de Transcrição/genética , Sequência de Bases , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Homeostase/genética , Humanos , Metilação , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Mutação , Fosforilação Oxidativa , Ligação Proteica , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
6.
Nucleic Acids Res ; 45(20): 12005-12014, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29036323

RESUMO

PUF (Pumilio/fem-3 mRNA binding factor) proteins, a conserved family of RNA-binding proteins, recognize specific single-strand RNA targets in a specific modular way. Although plants have a greater number of PUF protein members than do animal and fungal systems, they have been the subject of fewer structural and functional investigations. The aim of this study was to elucidate the involvement of APUM23, a nucleolar PUF protein in the plant Arabidopsis, in pre-rRNA processing. APUM23 is distinct from classical PUF family proteins, which are located in the cytoplasm and bind to 3'UTRs of mRNA to modulate mRNA expression and localization. We found that the complete RNA target sequence of APUM23 comprises 11 nt in 18S rRNA at positions 1141-1151. The complex structure shows that APUM23 has 10 PUF repeats; it assembles into a C-shape, with an insertion located within the inner concave surface. We found several different RNA recognition features. A notable structural feature of APUM23 is an insertion in the third PUF repeat that participates in nucleotide recognition and maintains the correct conformation of the target RNA. Our findings elucidate the mechanism for APUM23's-specific recognition of 18S rRNA.


Assuntos
Proteínas de Arabidopsis/metabolismo , RNA de Plantas/metabolismo , RNA Ribossômico 18S/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Sítios de Ligação/genética , Calorimetria/métodos , Cristalografia por Raios X , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , RNA de Plantas/química , RNA de Plantas/genética , RNA Ribossômico 18S/química , RNA Ribossômico 18S/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Termodinâmica
7.
J Biol Chem ; 292(39): 16221-16234, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28808060

RESUMO

MEX-3 is a K-homology (KH) domain-containing RNA-binding protein first identified as a translational repressor in Caenorhabditis elegans, and its four orthologs (MEX-3A-D) in human and mouse were subsequently found to have E3 ubiquitin ligase activity mediated by a RING domain and critical for RNA degradation. Current evidence implicates human MEX-3C in many essential biological processes and suggests a strong connection with immune diseases and carcinogenesis. The highly conserved dual KH domains in MEX-3 proteins enable RNA binding and are essential for the recognition of the 3'-UTR and post-transcriptional regulation of MEX-3 target transcripts. However, the molecular mechanisms of translational repression and the consensus RNA sequence recognized by the MEX-3C KH domain are unknown. Here, using X-ray crystallography and isothermal titration calorimetry, we investigated the RNA-binding activity and selectivity of human MEX-3C dual KH domains. Our high-resolution crystal structures of individual KH domains complexed with a noncanonical U-rich and a GA-rich RNA sequence revealed that the KH1/2 domains of human MEX-3C bound MRE10, a 10-mer RNA (5'-CAGAGUUUAG-3') consisting of an eight-nucleotide MEX-3-recognition element (MRE) motif, with high affinity. Of note, we also identified a consensus RNA motif recognized by human MEX-3C. The potential RNA-binding sites in the 3'-UTR of the human leukocyte antigen serotype (HLA-A2) mRNA were mapped with this RNA-binding motif and further confirmed by fluorescence polarization. The binding motif identified here will provide valuable information for future investigations of the functional pathways controlled by human MEX-3C and for predicting potential mRNAs regulated by this enzyme.


Assuntos
Antígeno HLA-A2/metabolismo , Modelos Moleculares , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Elementos de Resposta , Ubiquitina-Proteína Ligases/metabolismo , Regiões 3' não Traduzidas , Sítios de Ligação , Cristalografia por Raios X , Antígeno HLA-A2/química , Antígeno HLA-A2/genética , Humanos , Ligação de Hidrogênio , Cinética , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Oligorribonucleotídeos/química , Oligorribonucleotídeos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Domínios RING Finger , RNA/química , RNA/metabolismo , RNA Mensageiro/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
8.
Nucleic Acids Res ; 44(2): 969-82, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26673708

RESUMO

The YTH domain-containing protein Mmi1, together with other factors, constitutes the machinery used to selectively remove meiosis-specific mRNA during the vegetative growth of fission yeast. Mmi1 directs meiotic mRNAs to the nuclear exosome for degradation by recognizing their DSR (determinant of selective removal) motif. Here, we present the crystal structure of the Mmi1 YTH domain in the apo state and in complex with a DSR motif, demonstrating that the Mmi1 YTH domain selectively recognizes the DSR motif. Intriguingly, Mmi1 also contains a potential m(6)A (N(6)-methyladenine)-binding pocket, but its binding of the DSR motif is dependent on a long groove opposite the m(6)A pocket. The DSR-binding mode is distinct from the m(6)A RNA-binding mode utilized by other YTH domains. Furthermore, the m(6)A pocket cannot bind m(6)A RNA. Our structural and biochemical experiments uncover the mechanism of the YTH domain in binding the DSR motif and help to elucidate the function of Mmi1.


Assuntos
RNA/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Adenina/análogos & derivados , Adenina/química , Adenina/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Motivos de Nucleotídeos , Estrutura Terciária de Proteína , RNA/química , Proteínas de Schizosaccharomyces pombe/genética , Uracila/química , Uracila/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética
9.
J Biol Chem ; 291(32): 16709-19, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27311713

RESUMO

ARAP3 (Arf-GAP with Rho-GAP domain, ANK repeat, and PH domain-containing protein 3) is unique for its dual specificity GAPs (GTPase-activating protein) activity for Arf6 (ADP-ribosylation factor 6) and RhoA (Ras homolog gene family member A) regulated by phosphatidylinositol 3,4,5-trisphosphate and a small GTPase Rap1-GTP and is involved in regulation of cell shape and adhesion. However, the molecular interface between the ARAP3-RhoGAP domain and RhoA is unknown, as is the substrates specificity of the RhoGAP domain. In this study, we solved the crystal structure of RhoA in complex with the RhoGAP domain of ARAP3. The structure of the complex presented a clear interface between the RhoGAP domain and RhoA. By analyzing the crystal structure and in combination with in vitro GTPase activity assays and isothermal titration calorimetry experiments, we identified the crucial residues affecting RhoGAP activity and substrates specificity among RhoA, Rac1 (Ras-related C3 botulinum toxin substrate 1), and Cdc42 (cell division control protein 42 homolog).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Ativadoras de GTPase/química , Proteína rhoA de Ligação ao GTP/química , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/química , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cristalografia por Raios X , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Domínios Proteicos , Complexo Shelterina , Relação Estrutura-Atividade , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína rhoA de Ligação ao GTP/genética
10.
J Struct Biol ; 187(2): 194-205, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24878663

RESUMO

c-Cbl-associated protein (CAP) is an important cytoskeletal adaptor protein involved in the regulation of adhesion turnover. The interaction between CAP and vinculin is critical for the recruitment of CAP to focal adhesions. The tandem SH3 domains (herein termed SH3a and SH3b) of CAP are responsible for its interaction with vinculin. However, the structural mechanism underlying the interaction between CAP and vinculin is poorly understood. In this manuscript, we report the solution structure of the tandem SH3 domains of CAP. Our NMR and ITC data indicate that the SH3a and SH3b domains of CAP simultaneously bind to a long proline-rich region of vinculin with different binding specificities. Furthermore, the crystal structures of the individual SH3a and SH3b domains complexed with their substrate peptides indicate that Q807(SH3a) and D881(SH3b) are the critical residues determining the different binding specificities of the SH3 domains. Based on the obtained structural information, a model of the SH3ab-vinculin complex was generated using MD simulation and SAXS data.


Assuntos
Adesões Focais/química , Proteínas dos Microfilamentos/química , Vinculina/química , Domínios de Homologia de src , Sítios de Ligação , Citoesqueleto/química , Citoesqueleto/ultraestrutura , Adesões Focais/ultraestrutura , Humanos , Proteínas dos Microfilamentos/ultraestrutura , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Vinculina/ultraestrutura
11.
Nat Commun ; 15(1): 3985, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734677

RESUMO

Pentamidine and melarsoprol are primary drugs used to treat the lethal human sleeping sickness caused by the parasite Trypanosoma brucei. Cross-resistance to these two drugs has recently been linked to aquaglyceroporin 2 of the trypanosome (TbAQP2). TbAQP2 is the first member of the aquaporin family described as capable of drug transport; however, the underlying mechanism remains unclear. Here, we present cryo-electron microscopy structures of TbAQP2 bound to pentamidine or melarsoprol. Our structural studies, together with the molecular dynamic simulations, reveal the mechanisms shaping substrate specificity and drug permeation. Multiple amino acids in TbAQP2, near the extracellular entrance and inside the pore, create an expanded conducting tunnel, sterically and energetically allowing the permeation of pentamidine and melarsoprol. Our study elucidates the mechanism of drug transport by TbAQP2, providing valuable insights to inform the design of drugs against trypanosomiasis.


Assuntos
Aquagliceroporinas , Microscopia Crioeletrônica , Melarsoprol , Simulação de Dinâmica Molecular , Pentamidina , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Aquagliceroporinas/metabolismo , Aquagliceroporinas/química , Melarsoprol/metabolismo , Melarsoprol/química , Pentamidina/química , Pentamidina/metabolismo , Transporte Biológico , Tripanossomicidas/química , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Humanos
12.
Nat Commun ; 13(1): 7549, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477448

RESUMO

The RNA-targeting type III-E CRISPR-gRAMP effector interacts with a caspase-like protease TPR-CHAT to form the CRISPR-guided caspase complex (Craspase), but their functional mechanism is unknown. Here, we report cryo-EM structures of the type III-E gRAMPcrRNA and gRAMPcrRNA-TPR-CHAT complexes, before and after either self or non-self RNA target binding, and elucidate the mechanisms underlying RNA-targeting and non-self RNA-induced protease activation. The associated TPR-CHAT adopted a distinct conformation upon self versus non-self RNA target binding, with nucleotides at positions -1 and -2 of the CRISPR-derived RNA (crRNA) serving as a sensor. Only binding of the non-self RNA target activated the TPR-CHAT protease, leading to cleavage of Csx30 protein. Furthermore, TPR-CHAT structurally resembled eukaryotic separase, but with a distinct mechanism for protease regulation. Our findings should facilitate the development of gRAMP-based RNA manipulation tools, and advance our understanding of the virus-host discrimination process governed by a nuclease-protease Craspase during type III-E CRISPR-Cas immunity.


Assuntos
Peptídeo Hidrolases , RNA , Peptídeo Hidrolases/genética , RNA/genética , Caspases
13.
Sci Adv ; 8(5): eabm3942, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35108041

RESUMO

The proton-activated chloride channel ASOR (TMEM206/PAC) permeates anions across cellular membranes in response to acidification, thereby enhancing acid-induced cell death and regulating endocytosis. The molecular mechanisms of pH-dependent control are not understood, in part because structural information for an activated conformation of ASOR is lacking. Here, we reconstitute function from purified protein and present a 3.1-Å-resolution cryo-electron microscopy structure of human ASOR at acidic pH in an activated conformation. The work contextualizes a previous acidic pH structure as a desensitized conformation. Combined with electrophysiological studies and high-resolution structures of resting and desensitized states, the work reveals mechanisms of proton sensing and ion pore gating. Clusters of extracellular acidic residues function as pH sensors and coalesce when protonated. Ensuing conformational changes induce metamorphosis of transmembrane helices to fashion an ion conduction pathway unique to the activated conformation. The studies identify a new paradigm of channel gating in this ubiquitous ion channel.

14.
J Mol Biol ; 432(20): 5632-5648, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32841658

RESUMO

The proteins MCU and EMRE form the minimal functional unit of the mitochondrial calcium uniporter complex in metazoans, a highly selective and tightly controlled Ca2+ channel of the inner mitochondrial membrane that regulates cellular metabolism. Here we present functional reconstitution of an MCU-EMRE complex from the red flour beetle, Tribolium castaneum, and a cryo-EM structure of the complex at 3.5 Šresolution. Using a novel assay, we demonstrate robust Ca2+ uptake into proteoliposomes containing the purified complex. Uptake is dependent on EMRE and also on the mitochondrial lipid cardiolipin. The structure reveals a tetrameric channel with a single ion pore. EMRE is located at the periphery of the transmembrane domain and associates primarily with the first transmembrane helix of MCU. Coiled-coil and juxtamembrane domains within the matrix portion of the complex adopt markedly different conformations than in a structure of a human MCU-EMRE complex, suggesting that the structures represent different conformations of these functionally similar metazoan channels.


Assuntos
Canais de Cálcio/química , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Membranas Mitocondriais/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Transporte de Cátions/química , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
15.
Elife ; 92020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32667285

RESUMO

The mitochondrial calcium uniporter is a Ca2+-gated ion channel complex that controls mitochondrial Ca2+ entry and regulates cell metabolism. MCU and EMRE form the channel while Ca2+-dependent regulation is conferred by MICU1 and MICU2 through an enigmatic process. We present a cryo-EM structure of an MCU-EMRE-MICU1-MICU2 holocomplex comprising MCU and EMRE subunits from the beetle Tribolium castaneum in complex with a human MICU1-MICU2 heterodimer at 3.3 Å resolution. With analogy to how neuronal channels are blocked by protein toxins, a uniporter interaction domain on MICU1 binds to a channel receptor site comprising MCU and EMRE subunits to inhibit ion flow under resting Ca2+ conditions. A Ca2+-bound structure of MICU1-MICU2 at 3.1 Å resolution indicates how Ca2+-dependent changes enable dynamic response to cytosolic Ca2+ signals.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Tribolium/genética , Animais , Microscopia Crioeletrônica , Proteínas de Drosophila , Genes de Insetos , Células HEK293 , Humanos , Tribolium/metabolismo
16.
Nat Commun ; 10(1): 251, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651569

RESUMO

Gene regulatory mechanisms rely on a complex network of RNA processing factors to prevent untimely gene expression. In fission yeast, the highly conserved ortholog of human ERH, called Erh1, interacts with the YTH family RNA binding protein Mmi1 to form the Erh1-Mmi1 complex (EMC) implicated in gametogenic gene silencing. However, the structural basis of EMC assembly and its functions are poorly understood. Here, we present the co-crystal structure of the EMC that consists of Erh1 homodimers interacting with Mmi1 in a 2:2 stoichiometry via a conserved molecular interface. Structure-guided mutation of the Mmi1Trp112 residue, which is required for Erh1 binding, causes defects in facultative heterochromatin assembly and gene silencing while leaving Mmi1-mediated transcription termination intact. Indeed, EMC targets masked in mmi1∆ due to termination defects are revealed in mmi1W112A. Our study delineates EMC requirements in gene silencing and identifies an ERH interface required for interaction with an RNA binding protein.


Assuntos
Proteínas de Transporte/metabolismo , Inativação Gênica , Ligação Proteica/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Montagem e Desmontagem da Cromatina/genética , Regulação Fúngica da Expressão Gênica , Meiose/genética , Multimerização Proteica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Terminação da Transcrição Genética , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/genética
17.
Protein Cell ; 8(1): 25-38, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27757847

RESUMO

Mitophagy is an essential intracellular process that eliminates dysfunctional mitochondria and maintains cellular homeostasis. Mitophagy is regulated by the post-translational modification of mitophagy receptors. Fun14 domain-containing protein 1 (FUNDC1) was reported to be a new receptor for hypoxia-induced mitophagy in mammalian cells and interact with microtubule-associated protein light chain 3 beta (LC3B) through its LC3 interaction region (LIR). Moreover, the phosphorylation modification of FUNDC1 affects its binding affinity for LC3B and regulates selective mitophagy. However, the structural basis of this regulation mechanism remains unclear. Here, we present the crystal structure of LC3B in complex with a FUNDC1 LIR peptide phosphorylated at Ser17 (pS17), demonstrating the key residues of LC3B for the specific recognition of the phosphorylated or dephosphorylated FUNDC1. Intriguingly, the side chain of LC3B Lys49 shifts remarkably and forms a hydrogen bond and electrostatic interaction with the phosphate group of FUNDC1 pS17. Alternatively, phosphorylated Tyr18 (pY18) and Ser13 (pS13) in FUNDC1 significantly obstruct their interaction with the hydrophobic pocket and Arg10 of LC3B, respectively. Structural observations are further validated by mutation and isothermal titration calorimetry (ITC) assays. Therefore, our structural and biochemical results reveal a working model for the specific recognition of FUNDC1 by LC3B and imply that the reversible phosphorylation modification of mitophagy receptors may be a switch for selective mitophagy.


Assuntos
Proteínas de Membrana , Proteínas Associadas aos Microtúbulos , Proteínas Mitocondriais , Mitofagia , Cristalografia por Raios X , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Estrutura Quaternária de Proteína
18.
FEBS J ; 284(20): 3422-3436, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28815970

RESUMO

The acetylation of lysine 56 of histone H3 (H3K56ac) enhances the binding affinity of histone chaperones to H3-H4 dimers. CREB-binding protein (CBP) possesses a bromodomain that recognizes H3K56 acetylation. CBP also possesses a histone acetyltransferase (HAT) domain, which has been shown to promote H3K56 acetylation of free histones to facilitate delivery of replication-dependent chaperones to acetylated histones for chromatin assembly. However, the mechanism by which the CBP bromodomain recognizes H3K56ac and the context in which such recognition occurs remain elusive. Here, we solved the crystal structure of the CBP bromodomain in complex with an H3K56ac peptide. Our data demonstrate that the CBP bromodomain recognizes H3K56ac with high affinity. Structural and affinity analyses reveal that the CBP bromodomain prefers an aromatic residue at the -2 position and an arginine at the -4 position from the acetyl-lysine, and that the CBP bromodomain selectively recognizes an extended conformation of the H3 αN helix that contains H3K56ac. We also demonstrate that the CBP bromodomain binds to H3K56ac in a recombinant H3-H4 dimer but not in a mono-nucleosome. Our results suggest that the CBP bromodomain selectively recognizes an extended conformation of the K56-acetylated H3 αN region within an H3-H4 dimer, which is expected to facilitate the HAT activity of CBP for subsequent H3K56 acetylation of free histones. DATABASES: Coordinates of the CBP bromodomain in complex with H3K56ac as described in this article have been deposited in the PDB with accession number 5GH9.


Assuntos
Proteína de Ligação a CREB/metabolismo , Histonas/química , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Sítios de Ligação , Proteína de Ligação a CREB/química , Cristalografia por Raios X , Histona Acetiltransferases/metabolismo , Humanos , Lisina/química , Lisina/metabolismo , Nucleossomos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína
19.
Sci Rep ; 6: 37803, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886256

RESUMO

Ricin is a type II ribosome-inactivating protein (RIP) that depurinates A4324 at the sarcin-ricin loop of 28 S ribosomal RNA (rRNA), thus inactivating the ribosome by preventing elongation factors from binding to the GTPase activation centre. Recent studies have disclosed that the conserved C-terminal domain (CTD) of eukaryotic ribosomal P stalk proteins is involved in the process that RIPs target ribosome. However, the details of the molecular interaction between ricin and P stalk proteins remain unknown. Here, we report the structure of ricin-A chain (RTA) in a complex with the CTD of the human ribosomal protein P2. The structure shows that the Phe111, Leu113 and Phe114 residues of P2 insert into a hydrophobic pocket formed by the Tyr183, Arg235, Phe240 and Ile251 residues of RTA, while Asp115 of P2 forms hydrogen bonds with Arg235 of RTA. The key residues in RTA and P2 for complex formation were mutated, and their importance was determined by pull-down assays. The results from cell-free translation assays further confirmed that the interaction with P stalk proteins is essential for the inhibition of protein synthesis by RTA. Taken together, our results provide a structural basis that will improve our understanding of the process by which ricin targets the ribosome, which will benefit the development of effective small-molecule inhibitors for use as therapeutic agents.


Assuntos
Fosfoproteínas/metabolismo , Proteínas Ribossômicas/metabolismo , Ricina/metabolismo , Fosfoproteínas/química , Ligação Proteica , Conformação Proteica , Proteínas Ribossômicas/química
20.
Sci Rep ; 6: 33905, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27665728

RESUMO

Hda1 is the catalytic core component of the H2B- and H3- specific histone deacetylase (HDAC) complex from Saccharomyces cerevisiae, which is involved in the epigenetic repression and plays a crucial role in transcriptional regulation and developmental events. Though the N-terminal catalytic HDAC domain of Hda1 is well characterized, the function of the C-terminal ARB2 domain remains unknown. In this study, we determine the crystal structure of the ARB2 domain from S. cerevisiae Hda1 at a resolution of 2.7 Å. The ARB2 domain displays an α/ß sandwich architecture with an arm protruding outside. Two ARB2 domain molecules form a compact homo-dimer via the arm elements, and assemble as an inverse "V" shape. The pull-down and ITC results reveal that the ARB2 domain possesses the histone binding ability, recognizing both the H2A-H2B dimer and H3-H4 tetramer. Perturbation of the dimer interface abolishes the histone binding ability of the ARB2 domain, indicating that the unique dimer architecture of the ARB2 domain coincides with the function for anchoring to histone. Collectively, our data report the first structure of the ARB2 domain and disclose its histone binding ability, which is of benefit for understanding the deacetylation reaction catalyzed by the class II Hda1 HDAC complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA