Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Apoptosis ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635022

RESUMO

Hypoxic pulmonary hypertension (HPH) is a pathophysiological syndrome in which pulmonary vascular pressure increases under hypoxic stimulation and there is an urgent need to develop emerging therapies for the treatment of HPH. LncRNA MIR210HG is a long non-coding RNA closely related to hypoxia and has been widely reported in a variety of tumor diseases. But its mechanism in hypoxic pulmonary hypertension is not clear. In this study, we identified for the first time the potential effect of MIR210HG on disease progression in HPH. Furthermore, we investigated the underlying mechanism through which elevated levels of MIR210HG promotes the transition from a contractile phenotype to a synthetic phenotype in PASMCs under hypoxia via activation of autophagy-dependent ferroptosis pathway. While overexpression of HIF-2α in PASMCs under hypoxia significantly reversed the phenotypic changes induced by MIR210HG knockdown. We further investigated the potential positive regulatory relationship between STAT3 and the transcription of MIR210HG in PASMCs under hypoxic conditions. In addition, we established both in vivo and in vitro models of HPH to validate the differential expression of specific markers associated with hypoxia. Our findings suggest a potential mechanism of LncRNA MIR210HG in the progression of HPH and offer potential targets for disease intervention and treatment.

2.
Small ; 19(23): e2300766, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36866500

RESUMO

Scaling up the chemical vapor deposition (CVD) of monolayer transition metal dichalcogenides (TMDCs) is in high demand for practical applications. However, for CVD-grown TMDCs on a large scale, there are many existing factors that result in their poor uniformity. In particular, gas flow, which usually leads to inhomogeneous distributions of precursor concentrations, has yet to be well controlled. In this work, the growth of uniform monolayer MoS2 on a large scale by the delicate control of gas flows of precursors, which is realized by vertically aligning a well-designed perforated carbon nanotube (p-CNT) film face-to-face with the substrate in a horizontal tube furnace, is achieved. The p-CNT film releases gaseous Mo precursor from the solid part and allows S vapor to pass through the hollow part, resulting in uniform distributions of both gas flow rate and precursor concentrations near the substrate. Simulation results further verify that the well-designed p-CNT film guarantees a steady gas flow and a uniform spatial distribution of precursors. Consequently, the as-grown monolayer MoS2 shows quite good uniformity in geometry, density, structure, and electrical properties. This work provides a universal pathway for the synthesis of large-scale uniform monolayer TMDCs, and will advance their applications in high-performance electronic devices.

3.
Mol Cell Biochem ; 478(7): 1457-1464, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36357641

RESUMO

We aimed to build cellular aggregates of TS/A and normal fibroblasts (LX-2) or CAFs (ME-iLX-2), verifying the value of this model in the screening of anticancer drugs and demonstrating the effect of CD44 on aggregate formation. We improved soft agar culture medium to coculture CAFs (NFs) and TS/A and compared the amount and area of cellular aggregates. Eugenol was added to this model to test its value. The transcription of human CD44 was analyzed through RT-qPCR. Cellular aggregates were formed, and both the amount and area of aggregates in the TS/A-ME-iLX-2 coculture group were higher than those in other groups. The eugenol inhibited the formation of TS/A-fibroblasts aggregates. Human CD44 was highly transcripted in TS/A-ME-iLX-2 aggregates. Cocultured cellular aggregates of fibroblasts and TS/A were successfully formed in the improved soft agar culture medium, and the promotion effect of CAFs on cancer cells was further confirmed. The eugenol test showed its value in the screening of anticancer drugs. The RT-qPCR results demonstrated the important effect of CD44 on aggregate formation.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Ágar , Eugenol , Fibroblastos , Técnicas de Cocultura , Linhagem Celular Tumoral , Meios de Cultura , Proliferação de Células
4.
Angew Chem Int Ed Engl ; 62(16): e202301421, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36808416

RESUMO

The study of VO2 flourishes due to its rich competing phases induced by slight stoichiometry variations. However, the vague mechanism of stoichiometry manipulation makes the precise phase engineering of VO2 still challenging. Here, stoichiometry manipulation of single-crystal VO2 beams in liquid-assisted growth is systematically studied. Contrary to previous experience, oxygen-rich VO2 phases are abnormally synthesized under a reduced oxygen concentration, revealing the important function of liquid V2 O5 precursor: It submerges VO2 crystals and stabilizes their stoichiometric phase (M1) by isolating them from the reactive atmosphere, while the uncovered crystals are oxidized by the growth atmosphere. By varying the thickness of liquid V2 O5 precursor and thus the exposure time of VO2 to the atmosphere, various VO2 phases (M1, T, and M2) can be selectively stabilized. Furthermore, this liquid precursor-guided growth can be used to spatially manages multiphase structures in single VO2 beams, enriching their deformation modes for actuation applications.

5.
Int J Med Sci ; 19(9): 1417-1429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035368

RESUMO

Background: Idiopathic pulmonary fibrosis (IPF) is a chronic respiratory disease characterized by peripheral distribution of bilateral pulmonary fibrosis that is more pronounced at the base. IPF has a short median survival time and a poor prognosis. Therefore, it is necessary to identify effective prognostic indicators to guide the treatment of patients with IPF. Methods: We downloaded microarray data of bronchoalveolar lavage cells from the Gene Expression Omnibus (GEO), containing 176 IPF patients and 20 controls. The top 5,000 genes in the median absolute deviation were classified into different color modules using weighted gene co-expression network analysis (WGCNA), and the modules significantly associated with both survival time and survival status were identified as prognostic modules. We used Lasso Cox regression and multivariate Cox regression to search for hub genes related to prognosis from the differentially expressed genes (DEGs) in the prognostic modules and constructed a risk model and nomogram accordingly. Moreover, based on the risk model, we divided IPF patients into high-risk and low-risk groups to determine the biological functions and immune cell subtypes associated with the prognosis of IPF using gene set enrichment analysis and immune cell infiltration analysis. Results: A total of 153 DEGs located in the prognostic modules, three (TPST1, MRVI1, and TM4SF1) of which were eventually defined as prognostic hub genes. A risk model was constructed based on the expression levels of the three hub genes, and the accuracy of the model was evaluated using time-dependent receiver operating characteristic (ROC) curves. The areas under the curve for 1-, 2-, and 3-year survival rates were 0.862, 0.885, and 0.833, respectively. The results of enrichment analysis showed that inflammation and immune processes significantly affected the prognosis of patients with IPF. The degree of mast and natural killer (NK) cell infiltration also increases the prognostic risk of IPF. Conclusions: We identified three hub genes as independent molecular markers to predict the prognosis of patients with IPF and constructed a prognostic model that may be helpful in promoting therapeutic gains for IPF patients.


Assuntos
Fibrose Pulmonar Idiopática , Biomarcadores , Biologia Computacional , Humanos , Prognóstico , Curva ROC
6.
Nano Lett ; 21(24): 10400-10408, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34870433

RESUMO

As essential units in an artificial neural network (ANN), artificial synapses have to adapt to various environments. In particular, the development of synaptic transistors that can work above 125 °C is desirable. However, it is challenging due to the failure of materials or mechanisms at high temperatures. Here, we report a synaptic transistor working at hundreds of degrees Celsius. It employs monolayer MoS2 as the channel and Na+-diffused SiO2 as the ionic gate medium. A large on/off ratio of 106 can be achieved at 350 °C, 5 orders of magnitude higher than that of a normal MoS2 transistor in the same range of gate voltage. The short-term plasticity has a synaptic transistor function as an excellent low-pass dynamic filter. Long-term potentiation/depression and spike-timing-dependent plasticity are demonstrated at 150 °C. An ANN can be simulated, with the recognition accuracy reaching 90%. Our work provides promising strategies for high-temperature neuromorphic applications.


Assuntos
Molibdênio , Transistores Eletrônicos , Dióxido de Silício , Sinapses , Temperatura
7.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216487

RESUMO

With the warming global climate, drought stress is considered to be the most important abiotic factor limiting plant growth and yield in the world. Drought stress has serious impacts on crop production. Many researchers have studied the influences of drought stress on crop production and plant physiology; however, few researchers have combined root exudates with root-associated microbiomes for their mutual effects under drought conditions. In this review, we systematically illustrate the impact of drought stress on root exudates and root-associated microbiomes, and then we discuss the mutual regulation of root-associated microbiomes and the host plant in helping the plant adapt to drought. Finally, we construct a framework for the mutual connections between the plant, root exudates, and the microbiome. We hope this review can provide some significant guidelines to promote the study of drought resistance in plants in association with the rhizosphere microbiota.


Assuntos
Exsudatos e Transudatos/microbiologia , Microbiota/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Plantas/microbiologia , Estresse Fisiológico/fisiologia , Produção Agrícola/métodos , Secas , Rizosfera , Microbiologia do Solo
8.
BMC Genomics ; 22(1): 278, 2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33865333

RESUMO

BACKGROUND: Rice, which serves as a staple food for more than half of the world's population, is grown worldwide. The hybridization of wild and cultivated rice has enabled the incorporation of resistance to varying environmental conditions. Endophytic microbiota are known to be transferred with their host plants. Although some studies have reported on the endophytic microbiota of wild and cultivated rice, the inheritance from wild and cultivated rice accessions in next generations, in terms of endophytic microbiota, has not been examined. RESULTS: In the present study, the endophytic microbial community structures of Asian and African wild and cultivated rice species were compared with those of their F1 offspring. High-throughput sequencing data of bacterial 16S rDNA and fungal internal transcribed spacer regions were used to classify the endophytic microbiota of collected samples of rice. Results indicated that when either African or Asian wild rice species were crossed with cultivated rice accessions, the first generation harbored a greater number of root endophytic fungi than the cultivated parent used to make the crosses. Network analysis of the bacterial and fungal operational taxonomic units revealed that Asian and African wild rice species clustered together and exhibited a greater number of significant correlations between fungal taxa than cultivated rice. The core bacterial genus Acidovorax and the core fungal order Pleosporales, and genera Myrothecium and Bullera connected African and Asian wild rice accessions together, and both the wild rice accessions with their F1 offspring. On the other hand, the core bacterial genus Bradyrhizobium and the core fungal genera Dendroclathra linked the African and Asian cultivated rice accessions together. CONCLUSIONS: This study has theoretical significance for understanding the effect of breeding on the inheritance of endophytic microbiota of rice and identifying beneficial endophytic bacteria and fungi among wild and cultivated rice species, and their F1 offspring.


Assuntos
Oryza , Fungos/genética , Hibridização Genética , Oryza/genética , Melhoramento Vegetal , Raízes de Plantas/genética
9.
Int J Med Sci ; 18(15): 3412-3424, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522168

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is one of the most aggressive forms of idiopathic interstitial pneumonia. Some miRNAs may be associated with IPF and may affect the occurrence and development of IPF in various pathways. Many miRNAs and genes that may be involved in the development of IPF have been discovered using chip and high throughput technologies. Methods: We analyzed one miRNA and four mRNA databases. We identified hub genes and pathways related to IPF using GO, KEGG enrichment analysis, gene set variation analysis (GSVA), PPI network construction, and hub gene analysis. A comprehensive analysis of differentially expressed miRNAs (DEMs), predicted miRNA target genes, and differentially expressed genes (DEGs) led to the creation of a miRNA-mRNA regulatory network in IPF. Results: We found 203 DEGs and 165 DEMs that were associated with IPF. The findings of enrichment analyses showed that these DEGs were mainly involved in antimicrobial humoral response, antimicrobial humoral immune response mediated by antimicrobial peptide, extracellular matrix organization, cell killing, and organ or tissue specific immune response. The VEGFA, CDH5, and WNT3A genes overlapped between hub genes and the miRNA-mRNA regulatory network. The miRNAs including miR-199b-5p, miR-140-5p, miR-199a-5p, miR-125A-5p, and miR-107 that we predicted would regulate the VEGFA, CDH5, and WNT3A genes, which were also associated with IPF or other fibrosis-related diseases. GSVA indicated that metabolic processes of UTP and IMP, immune response, regulation of Th2 cell cytokine production, and positive regulation of NK cell-mediated immunity are associated with the pathogenesis and treatment of IPF. These pathways also interact with VEGFA, CDH5, and WNT3A. Conclusion: These findings provide a new research direction for the diagnosis and treatment of IPF.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Fibrose Pulmonar Idiopática/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Wnt3A/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Humanos , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo
10.
Haematologica ; 99(10): 1591-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24997151

RESUMO

The transcription factor Sox4 plays an indispensable role in the development of early progenitor B cells from hematopoietic stem cells. However, its role in B-cell acute lymphoblastic leukemia, a malignant counterpart of normal progenitor B cells, is not fully understood. Here we show that SOX4 is highly expressed in human acute lymphoblastic leukemia cells. To systematically study the function of Sox4 in acute lymphoblastic leukemia, we established a genetically defined mouse leukemia model by transforming progenitor B cells carrying a floxed Sox4 allele and inducing deletion of the allele by the self-excising Cre recombinase. This model allowed us to work with two groups of leukemic cells that had either one copy or both copies of Sox4 deleted. We found that depletion of Sox4 in transformed cells in vitro reduced cell growth in vitro and the progression of leukemia in vivo. Moreover, depletion of Sox4 in leukemic cells in vivo prolonged the survival of the mice, suggesting that it could be a potential target in acute lymphoblastic leukemia therapy. Our microarray and bioChIP studies revealed that Tcf7l1 was the key gene directly regulated by Sox4. Knockdown of Tcf7l1 reduced cell proliferation, just as did knockout of Sox4, and ectopic expression of Tcf7l1 could reverse the effect of Sox4 knockout on cell proliferation. These data suggest that Sox4 and Tcf7l1 form a functional axis that promotes the progression of BCR-ABL-positive acute lymphoblastic leukemia.


Assuntos
Proteínas de Fusão bcr-abl/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Fatores de Transcrição SOXC/metabolismo , Proteína 1 Semelhante ao Fator 7 de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Análise por Conglomerados , Progressão da Doença , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição SOXC/genética , Proteína 1 Semelhante ao Fator 7 de Transcrição/genética , Carga Tumoral/genética
11.
Sci Rep ; 14(1): 14082, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890416

RESUMO

The Lower Jurassic Ziliujing Formation in China's Sichuan Basin is a significant shale target for exploration; however, the strong heterogeneity of the properties of organic matter (OM) in shale makes it challenging to identify the target area for exploration, and the mechanism of OM enrichment is still unclear. Furthermore, the mechanisms of the response of the Da'anzhai member to the Toarcian Oceanic Anoxic Event (T-OAE) are controversial. Previous studies have focused on sedimentary facies analysis based on mineralogy and elemental abundances and have provided minimal information about organic geochemistry, which adds to the challenge of deeply understanding the influence of the T-OAE on the molecular geochemical characteristics of the Da'anzhai member. In this study, the Da'anzhai member of the Lower Jurassic Ziliujing Formation in the Langzhong area, Sichuan Basin, is studied via X-ray diffraction, total organic carbon, gas chromatography-mass spectrometry, organic carbon isotope, organic petrographical and pyrolysis analyses. To accurately identify the trend of the paleosedimentary environmental proxies, the Mann‒Kendall test is utilized to identify the trend of the data. Our results show that the Da'anzhai shale was deposited in a dysoxic transitional environment to an intermittent reducing environment with freshwater to brackish conditions. The response to the T-OAE can be identified in the middle and upper parts of the middle submember and the bottom of the upper submember of the Da'anzhai member. The T-OAE influenced the redox conditions, salinity, and OM origins during deposition in the middle of the Da'anzhai member, which resulted in the enrichment of OM. The abnormally high C30 diahopane/C30 hopane (C30D/C30H) ratio can be considered a potential proxy for locating the section of strata that responded to the T-OAE in the Da'anzhai member. In the study area, the mechanism of the response of the Da'anzhai shale to the T-OAE manifested as an improvement in hydrological cycling rather than a marine incursion. Our study provides new information that deepens the understanding of the mechanisms of the response of lacustrine shales to oceanic anoxic events from the perspective of molecular organic geochemistry.

12.
Microorganisms ; 12(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38399698

RESUMO

Soil amendments may enhance crop yield and quality by increasing soil nutrient levels and improving nutrient absorption efficiency, potentially through beneficial microbial interactions. In this work, the effects of amending soil with straw-based carbon substrate (SCS), a novel biochar material, on soil nutrients, soil microbial communities, and maize yield were compared with those of soil amendment with conventional straw. The diversity and abundance of soil bacterial and fungal communities were significantly influenced by both the maize growth period and the treatment used. Regression analysis of microbial community variation indicated that Rhizobiales, Saccharimonadales, and Eurotiales were the bacterial and fungal taxa that exhibited a positive response to SCS amendment during the growth stages of maize. Members of these taxa break down organic matter to release nutrients that promote plant growth and yield. In the seedling and vegetative stages of maize growth, the abundance of Rhizobiales is positively correlated with the total nitrogen (TN) content in the soil. During the tasseling and physiological maturity stages of corn, the abundance of Saccharimonadales and Eurotiales is positively correlated with the content of total carbon (TC), total phosphorus (TP), and available phosphorus (AP) in the soil. The results suggest that specific beneficial microorganisms are recruited at different stages of maize growth to supply the nutrients required at each stage. This targeted recruitment strategy optimizes the availability of nutrients to plants and ultimately leads to higher yields. The identification of these key beneficial microorganisms may provide a theoretical basis for the targeted improvement of crop yield and soil quality. This study demonstrates that SCS amendment enhances soil nutrient content and crop yield compared with conventional straw incorporation and sheds light on the response of soil microorganisms to SCS amendment, providing valuable insights for the future implementation of this material.

13.
Int J Biol Macromol ; 275(Pt 2): 133639, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969042

RESUMO

Clarifying the cellular origin and regulatory mechanisms of intramuscular fat (IMF) deposition is crucial for improving beef quality. Here, we used single-nucleus RNA sequencing to analyze the structure and heterogeneity of skeletal muscle cell populations in different developmental stages of Yanbian cattle and identified eight cell types in two developmental stages of calves and adults. Among them, fibro/adipogenic progenitors (FAPs) expressing CD29 (ITGA7)pos and CD56 (NCAM1)neg surface markers were committed to IMF deposition in beef cattle and expressed major Wnt ligands and receptors. LY2090314/XAV-939 was used to activate/inhibit Wnt/ß-catenin signal. The results showed that the blockade of Glycogen Synthase Kinase 3 (GSK3) by LY2090314 promoted the stabilization of ß-catenin and reduced the expression of genes related adipogenic differentiation (e.g., PPARγ and C/EBPα) in bovine FAPs, confirming the anti-adipogenic effect of GSK3. XAV-939 inhibition of the Wnt/ß-catenin pathway promoted the lipid accumulation capacity of FAPs. Furthermore, we found that blocking GSK3 enhanced the paracrine effects of FAPs-MuSCs and increased myotube formation in muscle satellite cells (MuSCs). Overall, our results outline a single-cell atlas of skeletal muscle development in Yanbian cattle, revealed the role of Wnt/GSK3/ß-catenin signaling in FAPs adipogenesis, and provide a theoretical basis for further regulation of bovine IMF deposition.

14.
Rice (N Y) ; 17(1): 18, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429614

RESUMO

Sulfur (S) is one of the main components of important biomolecules, which has been paid more attention in the anaerobic environment of rice cultivation. In this study, 12 accessions of rice materials, belonging to two Asian rice domestication systems and one African rice domestication system, were used by shotgun metagenomics sequencing to compare the structure and function involved in S cycle of rhizosphere microbiome between wild and cultivated rice. The sulfur cycle functional genes abundances were significantly different between wild and cultivated rice rhizosphere in the processes of sulfate reduction and other sulfur compounds conversion, implicating that wild rice had a stronger mutually-beneficial relationship with rhizosphere microbiome, enhancing sulfur utilization. To assess the effects of sulfate reduction synthetic microbiomes, Comamonadaceae and Rhodospirillaceae, two families containing the genes of two key steps in the dissimilatory sulfate reduction, aprA and dsrA respectively, were isolated from wild rice rhizosphere. Compared with the control group, the dissimilatory sulfate reduction in cultivated rice rhizosphere was significantly improved in the inoculated with different proportions groups. It confirmed that the synthetic microbiome can promote the S-cycling in rice, and suggested that may be feasible to construct the synthetic microbiome step by step based on functional genes to achieve the target functional pathway. In summary, this study reveals the response of rice rhizosphere microbial community structure and function to domestication, and provides a new idea for the construction of synthetic microbiome.

15.
Cell Death Discov ; 9(1): 239, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438344

RESUMO

Pulmonary hypertension (PH) is a clinical and pathophysiological syndrome caused by changes in pulmonary vascular structure or function that results in increased pulmonary vascular resistance and pulmonary arterial pressure, and it is characterized by pulmonary endothelial dysfunction, pulmonary artery media thickening, pulmonary vascular remodeling, and right ventricular hypertrophy, all of which are driven by an imbalance between the growth and death of pulmonary vascular cells. Programmed cell death (PCD), different from cell necrosis, is an active cellular death mechanism that is activated in response to both internal and external factors and is precisely regulated by cells. More than a dozen PCD modes have been identified, among which apoptosis, autophagy, pyroptosis, ferroptosis, necroptosis, and cuproptosis have been proven to be involved in the pathophysiology of PH to varying degrees. This article provides a summary of the regulatory patterns of different PCD modes and their potential effects on PH. Additionally, it describes the current understanding of this complex and interconnected process and analyzes the therapeutic potential of targeting specific PCD modes as molecular targets.

16.
Clin Exp Metastasis ; 40(1): 53-67, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36479657

RESUMO

Nanoparticles possess the ability to adsorb and load other compounds. This study aimed to synthesize a gene carrier with polyethyleneimine (PEI), hyaluronic acid (HA) and mesoporous silica nanoparticles (MSNs) for circ_0086375 delivery to investigate the role and mechanism of circ_0086375 in pancreatic cancer (PC) progression. The expression of genes and proteins was detected by quantitative real-time polymerase chain reaction and Western blot. In vitro experiments were performed by cell counting Kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, transwell assay, and wound healing assay, respectively. Dual-luciferase activity assay was used to investigate the target relationship between miR-646 and circ_0086375 or SLC4A4 (solute carrier family 4 member 4). Circ_0086375 loaded PEI/HA-based mesoporous silica nanoparticles (MSNs) were prepared, and in vivo assay was performed by using xenograft tumor model. Circ_0086375 expression was decreased in PC tissues and cells. Restoration of circ_0086375 suppressed PC cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, circ_0086375 acted as a sponge for miR-646 to elevate SLC4A4 expression, which was confirmed to be a target of miR-646. The prepared circ_0086375/MSN/PEI/HA nanocomplexes showed excellent fluorescent properties and a higher cellular uptake of circ_0086375 in PC cells. Moreover, circ_0086375/MSN/PEI/HA showed relatively more anticancer effects in PC than that of circ_0086375 alone in vitro and in vivo. Delivery of circ_0086375 by nanoparticles suppresses the tumorigenicity of pancreatic cancer by miR-646/SLC4A4 axis, suggesting a new potential target for future pancreatic cancer treatment.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias Pancreáticas/genética , Proliferação de Células , MicroRNAs/genética , Simportadores de Sódio-Bicarbonato , Neoplasias Pancreáticas
17.
Food Chem ; 419: 136076, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004366

RESUMO

Fucoxanthin (FX) extracted from Undaria pinnatifida by an ultrasonic-assisted extraction (UAE) procedure was successfully added to the fermented yogurt through a stably nanoencapsulation. The physicochemical characteristics, texture analysis, rheological testing, sensory evaluation, simulated digestion analysis, and 16SrDNA sequencing analysis were used to evaluate the effect of encapsulated-FX on the function, structure and stability of the fermented yogurt during 7 days cold storage. Encapsulated-FX with a highly water dispersion, changed the microstructure of yogurt, making it more uniform and denser, enhanced the antioxidant activity, increased the stability of milk protein in simulated gastric environment in vitro and promoted the absorption of protein small molecule fragments in the intestine, and inhibited the growth of harmful bacteria during cold storage. This study provided a simple strategy for the production of FX-fortified yogurt by using an effective nanoencapsulation technology, and promoted the extraction and application of active ingredients of edible brown algae.


Assuntos
Xantofilas , Iogurte , Fenômenos Químicos , Proteínas do Leite/análise , Xantofilas/análise , Iogurte/análise , Temperatura Baixa
18.
Food Res Int ; 173(Pt 2): 113419, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803757

RESUMO

Rapid sensory profiling methods relying on consumers' perceptions are getting prevalent and broadly utilized by labs and companies to supersede conventional sensory profiling methodologies. Till now, various intensity-based sensory methods such as the newly proposed Pivot-Check-All-That-Apply (CATA) are limitedly developed and compared. In this investigation, Pivot Profile (PP), Rate-All-That-Apply (RATA), and Pivot-CATA methods were applied and validated using tea consumers and commercial Chinese tea products as samples. Data from three approaches were collected, analyzed by correspondence analysis (CA), and used to compare the three methods assessing the panel assessment process, sensory maps, confidence ellipses, and practical applications. Pivot-CATA exhibited a high similarity with RATA (RV = 0.873), and a lower similarity with PP (RV = 0.629). Of the three intensity-related methods, confidence ellipses on the RATA sensory map were the smallest and overlapped the least. However, Pivot-CATA consumed less time in collecting data and its questionnaire was more friendly to participants compared with PP and made the difference in intensity of samples more noticeable to the participants than RATA due to the existence of the pivot sample. Its experimental versatility also allows for a wide range of applications, indicating that the Pivot-CATA is an approach with great promise for routine use.


Assuntos
Processos Mentais , Paladar , Humanos , Inquéritos e Questionários , Comportamento do Consumidor , Chá
19.
Adv Mater ; 35(18): e2210735, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36652589

RESUMO

Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect-free interfaces are of vital importance for building nanoscale harsh-environment-resistant devices. However, current nanoscale devices are subject to failure in these environments, especially at defective electrode-channel interfaces. Here, harsh-environment-resistant MoS2 transistors are developed by engineering electrode-channel interfaces with an all-transfer of van der Waals electrodes. The delivered defect-free, graphene-buffered electrodes keep the electrode-channel interfaces intact and robust. As a result, the as-fabricated MoS2 devices have reduced Schottky barrier heights, leading to a very large on-state current and high carrier mobility. More importantly, the defect-free, hydrophobic graphene buffer layer prevents metal diffusion from the electrodes to MoS2 and the intercalation of water molecules at the electrode-MoS2 interfaces. This enables high resistances of MoS2 devices with all-transfer electrodes to various harsh environments, including humid, oxidizing, and high-temperature environments, surpassing the devices with other kinds of electrodes. The work deepens the understanding of the roles of electrode-channel interfaces in nanoscale devices and provides a promising interface engineering strategy to build nanoscale harsh-environment-resistant devices.

20.
Int J Oncol ; 62(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416310

RESUMO

The present study aimed to explore the role of histone chaperone anti­silencing function 1B (ASF1B) in pancreatic cancer and the underlying mechanism. The biological function of ASF1B was investigated in pancreatic cancer cell lines (PANC­1 and SW1990) and a mouse xenograft model. Chromatin immunoprecipitation was used to detect the effect of ASF1B on the transcriptional activity of c­Myc. ASF1B was highly expressed in pancreatic adenocarcinoma (PAAD) samples from The Cancer Genome Atlas. ASF1B expression was positively associated with poor survival rates in patients with PAAD. Silencing of ASF1B in PANC­1 and SW1990 cells inhibited cell proliferation, migration and invasion, and induced apoptosis. Mechanistically, ASF1B increased H3K56 acetylation (H3K56ac) in a CREB­binding protein (CBP)­dependent manner. ASF1B promoted H3K56ac at the c­Myc promoter and increased c­Myc expression. In PANC­1 and SW1990 cells, the CBP inhibitor curcumin and the c­Myc inhibitor 10058­F4 reversed the promoting effects of ASF1B on cell proliferation, migration and invasion. In the mouse xenograft model, ASF1B silencing inhibited tumor growth, and was associated with low H3K56ac and c­Myc expression. ASF1B promoted pancreatic cancer progression by activating c­Myc via CBP­mediated H3K56ac.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Neoplasias Pancreáticas/genética , Pâncreas , Acetilação , Modelos Animais de Doenças , Proteínas de Ciclo Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA