Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 602, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943117

RESUMO

OBJECTIVE: This study aims to elucidate the functional role of IQGAP1 phosphorylation modification mediated by the SOX4/MAPK1 regulatory axis in developing pancreatic cancer through phosphoproteomics analysis. METHODS: Proteomics and phosphoproteomics data of pancreatic cancer were obtained from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Differential analysis, kinase-substrate enrichment analysis (KSEA), and independent prognosis analysis were performed on these datasets. Subtype analysis of pancreatic cancer patients was conducted based on the expression of prognostic-related proteins, and the prognosis of different subtypes was evaluated through prognosis analysis. Differential analysis of proteins in different subtypes was performed to identify differential proteins in the high-risk subtype. Clinical correlation analysis was conducted based on the expression of prognostic-related proteins, pancreatic cancer typing results, and clinical characteristics in the pancreatic cancer proteomics dataset. Functional pathway enrichment analysis was performed using GSEA/GO/KEGG, and most module proteins correlated with pancreatic cancer were selected using WGCNA analysis. In cell experiments, pancreatic cancer cells were grouped, and the expression levels of SOX4, MAPK1, and the phosphorylation level of IQGAP1 were detected by RT-qPCR and Western blot experiments. The effect of SOX4 on MAPK1 promoter transcriptional activity was assessed using a dual-luciferase assay, and the enrichment of SOX4 on the MAPK1 promoter was examined using a ChIP assay. The proliferation, migration, and invasion functions of grouped pancreatic cancer cells were assessed using CCK-8, colony formation, and Transwell assays. In animal experiments, the impact of SOX4 on tumor growth and metastasis through the regulation of MAPK1-IQGAP1 phosphorylation modification was studied by constructing subcutaneous and orthotopic pancreatic cancer xenograft models, as well as a liver metastasis model in nude mice. RESULTS: Phosphoproteomics and proteomics data analysis revealed that the kinase MAPK1 may play an important role in pancreatic cancer progression by promoting IQGAP1 phosphorylation modification. Proteomics analysis classified pancreatic cancer patients into two subtypes, C1 and C2, where the high-risk C2 subtype was associated with poor prognosis, malignant tumor typing, and enriched tumor-related pathways. SOX4 may promote the occurrence of the high-risk C2 subtype of pancreatic cancer by regulating MAPK1-IQGAP1 phosphorylation modification. In vitro cell experiments confirmed that SOX4 promoted IQGAP1 phosphorylation modification by activating MAPK1 transcription while silencing SOX4 inhibited the proliferation, migration, and invasion of pancreatic cancer cells by reducing the phosphorylation level of MAPK1-IQGAP1. In vivo, animal experiments further confirmed that silencing SOX4 suppressed the growth and metastasis of pancreatic cancer by reducing the phosphorylation level of MAPK1-IQGAP1. CONCLUSION: The findings of this study suggest that SOX4 promotes the phosphorylation modification of IQGAP1 by activating MAPK1 transcription, thereby facilitating the growth and metastasis of pancreatic cancer.


Assuntos
Progressão da Doença , Neoplasias Pancreáticas , Proteômica , Fatores de Transcrição SOXC , Proteínas Ativadoras de ras GTPase , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Fosfoproteínas/metabolismo , Fosforilação , Prognóstico , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Transdução de Sinais , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética
2.
Tohoku J Exp Med ; 263(1): 17-25, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38267060

RESUMO

MicroRNAs (miRNAs) are related to the regulation of bone metabolism. Delayed fracture healing (DFH) is a common complication after fracture surgery. The study attempted to examine the role of miR-98-5p and bone morphogenetic protein (BMP)-2 with the onset of DFH. A total of 140 patients with femoral neck fracture were recruited, including 80 cases with normal fracture healing (NFH) and 60 cases with DFH. MC3T3-E1 cells were induced cell differentiation for cell function experiments. Real-time quantitative polymerase chain reaction (RT-qPCR) was carried out to test mRNA levels. Cell proliferation and apoptosis were determined via CCK-8 and flow cytometry assay. Luciferase reporter assay was done to verify the targeted regulatory relationship of miR-98-5p with BMP-2. In comparison with NFH cases, DFH patients owned high levels of serum miR-98-5p and low concentration of BMP-2, and the levels of the two indexes are significantly negatively correlated. Both miR-98-5p and BMP-2 had the ability to predict DFH, while their combined diagnostic value is the highest. BMP-2 was demonstrated to be the target gene of miR-98-5p. Overexpression of BMP-2 reversed the role of miR-98-5p in MC3T3-E1 cell proliferation, apoptosis and differentiation. Increased miR-98-5p and decreased BMP-2 serve as potential biomarkers for the diagnosis of DFH. MiR-98-5p overexpression inhibits osteoblast proliferation and differentiation via targeting BMP-2.


Assuntos
Apoptose , Proteína Morfogenética Óssea 2 , Proliferação de Células , Consolidação da Fratura , MicroRNAs , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Apoptose/genética , Sequência de Bases , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/genética , Diferenciação Celular/genética , Linhagem Celular , Fraturas do Colo Femoral/metabolismo , Fraturas do Colo Femoral/genética , Consolidação da Fratura/genética , MicroRNAs/genética , MicroRNAs/metabolismo
3.
Mol Med ; 29(1): 116, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641009

RESUMO

BACKGROUND: Inflammatory injury of gallbladder mucosal epithelial cells affects the development of cholelithiasis, and aquaporin 3 (AQP3) is an important regulator of inflammatory response. This study reports a mechanistic insight into AQP3 regulating gallstone formation in cholelithiasis based on high-throughput sequencing. METHODS: A mouse model of cholelithiasis was induced using a high-fat diet, and the gallbladder tissues were harvested for high-throughput sequencing to obtain differentially expressed genes. Primary mouse gallbladder mucosal epithelial cells were isolated and induced with Lipopolysaccharides (LPS) to mimic an in vitro inflammatory injury environment. Cell biological phenotypes were detected by TdT-mediated dUTP Nick-End Labeling (TUNEL) assay, flow cytometry, Cell Counting Kit-8 (CCK-8) assay, and Trypan blue staining. In addition, enzyme linked immunosorbent assay (ELISA) determined the production of inflammatory factors in mouse gallbladder mucosa. RESULTS: Whole-transcriptome sequencing data analysis identified 489 up-regulated and 1007 down-regulated mRNAs. Bioinformatics analysis revealed that AQP3 was significantly down-regulated in mice with cholelithiasis. AQP3 might also confer an important role in LPS-induced gallbladder mucosal injury. Overexpression of AQP3 activated the AMPK (adenosine monophosphate-activated protein kinase) / SIRT1 (sirtuin-1) signaling pathway to reduce LPS-induced inflammatory injury of the gallbladder mucosa epithelium, thereby ameliorating gallbladder damage and repressing gallstone formation in mice. CONCLUSION: Data from our study highlight the inhibitory role of AQP3 in gallbladder damage and gallstone formation in mice by reducing inflammatory injury of gallbladder mucosal epithelial cells, which is achieved through activation of the AMPK/SIRT1 signaling pathway.


Assuntos
Cálculos Biliares , Animais , Camundongos , Proteínas Quinases Ativadas por AMP , Aquaporina 3 , Sirtuína 1/genética , Lipopolissacarídeos , Células Epiteliais , Mucosa , Transdução de Sinais
4.
Cancer Cell Int ; 23(1): 294, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007443

RESUMO

Triple-negative breast Cancer (TNBC) is a highly malignant cancer with unclear pathogenesis. Within the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) vitally influence tumor onset and progression. Thus, this research aimed to identify distinct subgroups of CAF using single-cell and TNBC-related information from the GEO and TCGA databases, respectively. The primary aim was to establish a novel predictive model based on the CAF features and their clinical relevance. Moreover, the CAFs were analyzed for their immune characteristics, response to immunotherapy, and sensitivity to different drugs. The developed predictive model demonstrated significant effectiveness in determining the prognosis of patients with TNBC, TME, and the immune landscape of the tumor. Of note, the expression of GPR34 was significantly higher in TNBC tissues compared to that in other breast cancer (non-TNBC) tissues, indicating that GPR34 plays a crucial role in the onset and progression of TNBC. In summary, this research has yielded a novel predictive model for TNBC that holds promise for the accurate prediction of prognosis and response to immunotherapy in patients with TNBC.

5.
J Org Chem ; 86(6): 4804-4811, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33688729

RESUMO

A visible-light-promoted transfer hydrogenation of azobenzenes has been developed. In the presence of B2pin2 and upon visible-light irradiation, the reactions proceeded smoothly in methanol at ambient temperature. The azobenzenes with diverse functional groups have been reduced to the corresponding hydrazobenzenes with a yield of up to 96%. Preliminary mechanistic studies indicated that the hydrogen atom comes from the solvent and the transformation is achieved through a radical pathway.

6.
Org Biomol Chem ; 19(2): 394-398, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33325960

RESUMO

A visible-light-promoted O-H insertion reaction between 2-pyridones and α-aryldiazoacetates has been developed. Upon visible light irradiation, the reaction proceeds smoothly under mild and catalyst-free conditions. A wide scope of 2-pyridones and α-aryldiazoacetates are well tolerated, and various O-alkylated 2-pyridones are obtained with perfect selectivity and good functional group tolerance. A photoinduced radical process is probably responsible for the excellent selectivity.

7.
J Cell Physiol ; 235(11): 7849-7862, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31943198

RESUMO

Our previous studies have indicated that long noncoding RNA (lncRNA) SPRY4 intronic transcript 1 (SPRY4-IT1) was highly expressed in hepatocellular carcinoma (HCC). However, it still remained unclear how SPRY4-IT1 worked in tumorgenesis in HCC. In this study, we tested the overexpression of SPRY4-IT1 in HCC tissues and cells through a quantitative real-time polymerase chain reaction. Statistical analyses showed that the upregulation had an association with the tumor node metastasis stage, thrombin time, and alkaline phosphatase. Furthermore, SPRY4-IT1 could be involved in cell proliferation, metastasis, and the epithelial-to-mesenchymal transition (EMT) process in HCC in vitro and in vivo. RNA-sequencing and transcriptome analysis were carried out to explore the mechanism of SPRY4-IT1 in HCC. With SPRY4-IT1 being knocked down or overexpressed, the level of proteins in the tumor necrosis factor (TNF) signaling pathway changed. We detected the RNA binding protein heterogeneous nuclear ribonucleoprotein L (HNRNPL) as a SPRY4-IT1 interacting protein through RNA pull-down assay and liquid chromatography-mass spectrometry, then verified through RNA immunoprecipitation. Downregulation of HNRNPL induced the change of proteins observed on SPRY4-IT1 downregulation revealing the SPRY4-IT1: HNRNPL complex in the TNF signaling pathway and EMT process in HCC. In general, our experimental data and analysis demonstrated the role of SPRY4-IT1 in promoting progress and metastasis of HCC by the TNF signaling pathway.


Assuntos
Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , Ribonucleoproteínas/genética , Adulto , Idoso , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , RNA Longo não Codificante/metabolismo , Ribonucleoproteínas/metabolismo , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
Anal Biochem ; 610: 113846, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32726583

RESUMO

Small GTPase cycled between the GDP-bound inactive state and GTP-bound active state, catalyzed by guanine nucleotide exchange factors (GEFs). Guanine nucleotide exchange assay was a direct way to investigate the specificity, activity, and kinetics of GEFs. The N-methylanthraniloyl derivative of GDP (mantGDP), which was bound to small GTPase, served as a substitution for labeled small GTPase involved in bioluminescent, colorimetric, or radioactive methods due to its safety and sensitivity. In this study, we present an economical and efficient approach to prepare qualified mantGDP-bound CDC42, a member of the Rho GTPase family. In our protocol, with a Kd value of 0.048 µM, alkaline phosphatase hydrolysis of CDC42 increased mantGDP binding affinity to CDC42, allowing mant-nucleotide associating onto CDC42 more easily. Only 1.5-fold molar excess of mantGDP was required to prepare mantGDP-bound CDC42 without nonhydrolyzable GTP analog and high performance liquid chromatography. The mantGDP-bound CDC42 was verified to be efficient for measuring the guanine nucleotide exchange activity of VAV2.


Assuntos
Ensaios Enzimáticos/métodos , Guanosina Difosfato/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Fosfatase Alcalina/metabolismo , Calorimetria , Guanosina Difosfato/análogos & derivados , Humanos , Hidrólise , Cinética , Ligação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteína cdc42 de Ligação ao GTP/química , Proteína cdc42 de Ligação ao GTP/genética
9.
Protein Expr Purif ; 176: 105693, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32681954

RESUMO

FGD2, a member of FGD family, contains a Dbl homology domain (DH) and two pleckstrin homology domains segregated by a FYVE domain. The DH domain has been deduced to be responsible for guanine nucleotide exchange of CDC42 to activate downstream factors. Our aim was to build a prokaryotic expression system for the DH domain and to examine its guanine nucleotide exchange activity toward CDC42 in vitro. A recombinant vector, which was successfully constructed based on pGEX-6P-1, was employed to express the DH domain of human FGD2 (FGD2-DH) in E. coli BL21 (DE3). Purified FGD2-DH behaved as a homogeneous monomer with an estimated molecular weight that corresponded to the theoretical molecular weight and was predicted to be an α-helix protein by circular dichroism spectroscopy. FGD2-DH displayed weak guanine nucleotide exchange activity in vitro and very weak interactions with CDC42 following glutaraldehyde cross-linking.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Nucleotídeos de Guanina/química , Proteína cdc42 de Ligação ao GTP/química , Escherichia coli/genética , Escherichia coli/metabolismo , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Nucleotídeos de Guanina/metabolismo , Humanos , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
10.
Org Biomol Chem ; 18(46): 9494-9498, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33180081

RESUMO

A visible-light-promoted S-H insertion reaction between thiols and α-diazoesters was developed. The reaction proceeded smoothly at room temperature with a broad substrate scope, affording various thioethers in moderate to excellent yields. The catalyst- and additive-free nature, sustainable energy source and mild reaction conditions make this strategy more eco-friendly.

11.
Chembiochem ; 19(14): 1502-1506, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29722464

RESUMO

In laccase, type 1 copper (Cu1) was connected to the trinuclear copper center (TNC) by the conserved Cys-His bridge. An allosteric coupling between the two redox sites has been reported; however, the molecular mechanism underlining the allosteric coupling is unknown. In this study, ligands of the two type 3 copper sites, including His491 and His493, in CotA were mutated to Cys or Ala. The crystal structures revealed that mutations at His491 and His493 caused rearrangement of the hydrogen-bond network and geometric distortion of the TNC, which severely impaired the activities of mutants H493A, H493C, and H491C. In addition, the change in TNC affected hydrogen bonds around Cys492 in the mutants and led to Cu1 being partially reduced. These results not only decipher the mechanism of allosteric coupling between Cu1 and TNC in laccase, but also pave the way for laccase protein engineering.

12.
Appl Microbiol Biotechnol ; 101(23-24): 8395-8404, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29067484

RESUMO

ChKRED20 is an efficient and robust anti-Prelog ketoreductase that can catalyze the reduction of ketones to chiral alcohols as pharmaceutical intermediates with great industrial potential. To overcome its limitation on the bioreduction of ortho-substituted acetophenone derivatives, the X-ray crystal structure of the apo-enzyme of ChKRED20 was determined at a resolution of 1.85 Å and applied to the molecular modeling and reshaping of the catalytic cavity via three rounds of iterative saturation mutagenesis together with alanine scanning and recombination. The mutant Mut3B was achieved with expanded catalytic scope that covered all the nine substrates tested as compared with two substrates for the wild type. It exhibited 13-20-fold elevated k cat/K m values relative to the wild type or to the first gain-of-activity mutant, while retaining excellent stereoselectivity toward seven of the substrates (98-> 99% ee). Another mutant 29G10 displayed complementary selectivity for eight of the ortho-substituted acetophenone derivatives, with six of them delivering excellent stereoselectivity (90-99% ee). Its k cat/K m value toward 1-(2-fluorophenyl)ethanone was 5.6-fold of the wild type. The application of Mut3B in elevated substrate concentrations of 50-100 g/l was demonstrated in 50-ml reactions, achieving 75-> 99% conversion and > 99% ee.


Assuntos
Chryseobacterium/enzimologia , Cetonas/metabolismo , Mutagênese , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Cristalografia por Raios X , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Oxirredutases/química , Conformação Proteica , Especificidade por Substrato
13.
Anal Biochem ; 509: 46-49, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27372608

RESUMO

The DnaB helicase from Bacillus stearothermophilus (DnaBBst) was a model protein for studying the bacterial DNA replication. In this work, a non-radioactive method for measuring ATPase activity of DnaBBst helicase was described. The working parameters and conditions were optimized. Furthermore, this method was applied to investigate effects of DnaG primase, ssDNA and helicase loader protein (DnaI) on ATPase activity of DnaBBst. Our results showed this method was sensitive and efficient. Moreover, it is suitable for the investigation of functional interaction between DnaB and related factors.


Assuntos
Proteínas de Bactérias/metabolismo , DnaB Helicases/metabolismo , Geobacillus stearothermophilus/enzimologia , Corantes de Rosanilina/farmacologia , DNA Primase/metabolismo , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Corantes de Rosanilina/química
14.
J Struct Biol ; 190(2): 155-61, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25799944

RESUMO

Laccases can oxidize plenty of substrates by use of molecular oxygen as the final electron acceptor. The broad substrate spectrum is further expanded by using redox mediators in so-called laccase-mediator systems, but the structural studies on interactions between laccases and natural mediators are still absent. In this study, the crystal structure of CotA/sinapic acid complex is solved, structural comparison has revealed a novel substrate binding mode. The residue of His419 instead of His497 is bonding to the sinapic acid (SA) as the primary electron acceptor. Moreover, the binding of SA leads to 10° rotation on Arg416, our mutagenesis data exhibits that the residue Arg416 is crucial in the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and syringaldazine (SGZ). Furthermore, oxidation of several phenolic acids and one non-phenolic acid by CotA was investigated. By analyzing interactions between CotA and SA, it is indicated that the presence of methoxy groups in the ortho-position of the phenolic structure is crucial for the substrate recognition by CotA laccase. This work establishes structure-function relationships for laccase-natural mediator system.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ácidos Cumáricos/metabolismo , Lacase/química , Lacase/metabolismo , Modelos Moleculares , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Cristalização , Espectrometria de Massas , Oxirredução , Reação em Cadeia da Polimerase , Conformação Proteica
15.
Microb Cell Fact ; 14: 129, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26337099

RESUMO

BACKGROUND: Bacterial surface display technique enables the exogenous proteins or polypeptides displayed on the bacterial surface, while maintaining their relatively independent spatial structures and biological activities. The technique makes recombinant bacteria possess the expectant functions, subsequently, directly used for many applications. Many proteins could be used to achieve bacterial surface display, among them, autotransporter, a member of the type V secretion system of gram-negative bacteria, has been extensively studied because of its modular structure and apparent simplicity. However, autotransporter has not been widely used at present due to lack of a convenient genetic vector system. With our recently characterized autotransporter BrkA (Bordetella serum-resistance killing protein A) from Bordetella pertussis, we are aiming to develop a new autotransporter-based surface display system for potential wide application. RESULTS: Here, we construct a bacterial surface display system named as BrkAutoDisplay, based on the structure of autotransporter BrkA. BrkAutoDisplay is a convenient system to host exogenous genes. In our test, this system is good to efficiently display various proteins on the outer membrane surface of Escherichia coli, including green fluorescent protein (GFP), various enzymes and single chain antibody. Moreover, the displayed GFP possesses green fluorescence, the enzymes CotA, EstPc and PalA exhibit catalytic activity 0.12, 6.88 and 0.32 mU (per 5.2 × 10(8) living bacteria cells) respectively, and the single chain antibody fragment (scFv) can bind with its antigen strongly. Finally, we showed that C41(DE3) is a good strain of E. coli for the successful functionality of BrkAutoDisplay. CONCLUSIONS: We designed a new bacterial display system called as BrkAutoDisplay and displayed various exogenous proteins on E. coli surface. Our results indicate that BrkAutoDisplay system is worthy of further study for industrial applications.


Assuntos
Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Biocatálise , Enzimas/química , Enzimas/genética , Enzimas/metabolismo , Engenharia Genética/métodos , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Transgenes
16.
Int J Neurosci ; 125(7): 531-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25219918

RESUMO

BACKGROUND: Early brain injury (EBI) has recently been identified as the main factor of poor prognosis for subarachnoid hemorrhage (SAH), and apoptosis has an important function in EBI. Although nitric oxide (NO) and caspase-12, a specific molecule related to endoplasmic reticulum (ER) stress-induced apoptosis signaling pathways, are involved in brain injury after SAH, the relationship between NO and ER stress has not been reported yet. We examined the NO and caspase-12 contents and investigated the relationship between NO and ER stress-induced apoptosis. METHODS: Sprague-Dawley rats (n = 90), weighing 300 g to 350 g, were used for the SAH model. SAH was induced in rats by blood injection into the prechiasmatic cistern. NO, caspase-12, and apoptosis were measured by nitrate reductase method, real-time polymerase chain reaction, and terminal deoxynucleotidy1 transferase-mediated dUTP nick-end labeling staining, respectively, at different time points after SAH. Pearson correlation coefficients were used to examine correlation. RESULTS: NO level of cerebrospinal fluid significantly increased in the SAH group at 3, 24, 48, and 72 h compared with other groups. Caspase-12 also significantly increased at 1, 3, 6, 24, 48, and 72 h. Cell apoptosis significantly increased at 24, 48, and 72 h. A significant correlation between the number of apoptotic neurons and caspase-12 was found. NO was also correlated with caspase-12. CONCLUSIONS: Our results suggest that NO is involved in the pathophysiological events of EBI after SAH by increasing caspase-12, which results in neuronal apoptosis.


Assuntos
Lesões Encefálicas/líquido cefalorraquidiano , Lesões Encefálicas/etiologia , Óxido Nítrico/líquido cefalorraquidiano , Hemorragia Subaracnóidea/complicações , Animais , Lesões Encefálicas/patologia , Caspase 12/genética , Caspase 12/metabolismo , Modelos Animais de Doenças , Retículo Endoplasmático/ultraestrutura , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Marcação In Situ das Extremidades Cortadas , Masculino , Neurônios/ultraestrutura , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/mortalidade , Fatores de Tempo
17.
Eur J Med Res ; 29(1): 177, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494503

RESUMO

BACKGROUND: Phosducin-like 3 (PDCL3) is a member of the photoreceptor family, characterized by a thioredoxin-like structural domain and evolutionary conservation. It plays roles in angiogenesis and apoptosis. Despite its significance, research on the biological role of PDCL3 in liver hepatocellular carcinoma (LIHC) remains limited. This study aims to explore the prognostic value and potential mechanisms of PDCL3 in cancer, particularly in LIHC, through bioinformatics analysis. METHODS: RNA-seq data and corresponding clinical information for pan-cancer and LIHC were extracted from the TCGA database to analyze PDCL3 expression and survival prognosis. Differential expression of PDCL3 was analyzed using the HPA database. GO and KEGG enrichment analysis were performed for PDCL3-associated genes. The relationship between PDCL3 expression and various immune cell types was examined using the TIMER website. Clinical samples were collected, and immunohistochemistry and immunofluorescence experiments were conducted to validate the differential expression of PDCL3 in LIHC and normal tissues. In vitro assays, including CCK-8, wound healing, Transwell, and colony formation experiments, were employed to determine the biological functions of PDCL3 in LIHC cells. RESULTS: Analysis from TIMER, GEPIA, UALCAN, and HPA databases revealed differential expression of PDCL3 in various tumors. Prognostic analysis from GEPIA and TCGA databases indicated that high PDCL3 expression was associated with poorer clinical staging and prognosis in LIHC. Enrichment analysis of PDCL3-associated genes revealed its involvement in various immune responses. TCGA and TIMER databases showed that high PDCL3 expression in LIHC decreased tumor immune activity by reducing macrophage infiltration. PDCL3 exhibited positive correlations with multiple immune checkpoint genes. Immunohistochemistry (IHC) and immunofluorescence (IF) experiments confirmed elevated PDCL3 expression in LIHC tissues compared to adjacent normal tissues. In vitro experiments demonstrated that PDCL3 promoted LIHC cell proliferation, migration, invasion, and colony-forming ability. CONCLUSION: PDCL3 is highly expressed in various cancer types. Our study suggests that elevated PDCL3 expression in hepatocellular carcinoma is associated with poorer prognosis and may serve as a potential diagnostic biomarker for LIHC. PDCL3 may regulate the biological functions of LIHC by modulating immune infiltration. However, the precise regulatory mechanisms of PDCL3 in cancer warrant further investigation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Prognóstico , Neoplasias Hepáticas/genética , Biomarcadores , Proteínas de Transporte , Proteínas do Tecido Nervoso
18.
Int J Biol Macromol ; 256(Pt 2): 128487, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042324

RESUMO

CotA laccases are multicopper oxidases known for promiscuously oxidizing a broad range of substrates. However, studying substrate promiscuity is limited by the complexity of electron transfer (ET) between substrates and laccases. Here, a systematic analysis of factors affecting ET including electron donor acceptor coupling (ΗDA), driving force (ΔG) and reorganization energy (λ) was done. Catalysis rates of syringic acid (SA), syringaldehyde (SAD) and acetosyringone (AS) (kcat(SAD) > kcat(SA) > kcat(AS)) are not entirely dependent on the ability to form phenol radicals indicated by ΔG and λ calculated by Density Functional Theory (SA < SAD ≈ AS). In determined CotA/SA and CotA/SAD structures, SA and SAD bound at 3.9 and 3.7 Å away from T1 Cu coordinating His419 ensuring a similar ΗDA. Abilities of substrate to form phenol radicals could mainly account for difference between kcat(SAD) and kcat(SA). Furthermore, substrate pocket is solvent exposed at the para site of substrate's phenol hydroxyl, which would destabilize binding of AS in the same orientation and position resulting in low kcat. Our results indicated shallow partially covered binding site with propensity of amino acids distribution might help CotA discriminate lignin-phenol derivatives. These findings give new insights for developing specific catalysts for industrial application.


Assuntos
Lacase , Lignina , Lacase/química , Lignina/metabolismo , Fenol , Transporte de Elétrons , Fenóis
19.
Breast Cancer ; 31(1): 96-104, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914960

RESUMO

BACKGROUND: Solute carrier family 38 member 5 (SLC38A5), as an amino acid transporter, play a vital role in cellular biological processes. In this study, we analyzed the function of SLC38A5 and its potential mechanism in breast cancer (BC) progression. METHODS: The expression of SLC38A5 in cancer and adjacent-normal tissues was analyzed by qRT-PCR and Western blot, and its correlation with patient prognosis was analyzed. The immunohistochemical staining of cancer tissues and adjacent-normal tissues was performed on SLC38A5-positive specimens. BC mice were successfully applied to examine the role of SLC38A5 on tumor proliferation using the CCK-8 assay. In BC cells and mouse tumor tissues, SLC38A5 and PCNA expression were determined by Western blotting. RESULTS: The study found that SLC38A5 was highly expressed in BC patients and associated with a poor survival. SLC38A5 silencing inhibited BC cell viability and glutamine uptake. In addition, SLC38A5 overexpression promoted BC cell viability via the glutamine metabolism. SLC38A5 inhibited cisplatin chemosensitivity in BC cells. Importantly, SLC38A5 silencing inhibited tumor growth in vivo. CONCLUSION: Our findings suggest that SLC38A5 enhances BC cell viability by glutamine metabolism, inhibits the chemical sensitivity of cisplatin in BC cells, and promotes tumor growth, emphasizing the clinical relevance of SLC38A5 in BC management as a novel potential therapeutic target.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Glutamina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Sistemas de Transporte de Aminoácidos Neutros/uso terapêutico
20.
Heliyon ; 10(9): e29914, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38737285

RESUMO

This study was based on the use of whole-genome DNA methylation sequencing technology to identify DNA methylation biomarkers in tumor tissue that can predict the prognosis of patients with pancreatic cancer (PCa). TCGA database was used to download PCa-related DNA methylation and transcriptome atlas data. Methylation driver genes (MDGs) were obtained using the MethylMix package. Candidate genes in the MDGs were screened for prognostic relevance to PCa patients by univariate Cox analysis, and a prognostic risk score model was constructed based on the key MDGs. ROC curve analysis was performed to assess the accuracy of the prognostic risk score model. The effects of PIK3C2B knockdown on malignant phenotypes of PCa cells were investigated in vitro. A total of 2737 differentially expressed genes were identified, with 649 upregulated and 2088 downregulated, using 178 PCa samples and 171 normal samples. MethylMix was employed to identify 71 methylation-driven genes (47 hypermethylated and 24 hypomethylated) from 185 TCGA PCa samples. Cox regression analyses identified eight key MDGs (LEF1, ZIC3, VAV3, TBC1D4, FABP4, MAP3K5, PIK3C2B, IGF1R) associated with prognosis in PCa. Seven of them were hypermethylated, while PIK3C2B was hypomethylated. A prognostic risk prediction model was constructed based on the eight key MDGs, which was found to accurately predict the prognosis of PCa patients. In addition, the malignant phenotypes of PANC-1 cells were decreased after the knockdown of PIK3C2B. Therefore, the prognostic risk prediction model based on the eight key MDGs could accurately predict the prognosis of PCa patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA