Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 147: 109467, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423489

RESUMO

LEAP2 (liver expression antimicrobial peptide 2), is an antimicrobial peptide widely found in vertebrates and mainly expressed in liver. LEAP2 plays a vital role in host innate immunity. In teleosts, a number of LEAP2 homologs have been reported, but their in vivo effects on host defense are still limited. In this study, a LEAP2 homolog (SsLEAP2) was identified from black rockfish, Sebastes schlegelii, and its structure, expression as well as biological functions were analyzed. The results showed that the open reading frame of SsLEAP2 is 300 bp, with a 5'- untranslated region (UTR) of 375 bp and a 3' - UTR of 238 bp. The deduced amino acid sequence of SsLEAP2 shares the highest overall identity (96.97%) with LEAP2 of Sebastes umbrosus. SsLEAP2 possesses conserved LEAP2 features, including a signal peptide sequence, a prodomain and a mature peptide, in which four well-conserved cysteines formed two intrachain disulphide domain. The expression of SsLEAP2 was highest in liver and could be induced by experimental infection with Listonella anguillarum, Edwardsiealla piscicida and Rock bream iridovirus C1 (RBIV-C1). Recombinant SsLEAP2 (rSsLEAP2) purified from Escherichia coli was able to bind with various Gram-positive and Gram-negative bacteria. Further analysis showed that rSsLEAP2 could enhance the respiratory burst activity, and induce the expression of immune genes including interleukin 1-ß (IL-1ß) and serum amyloid A (SAA) in macrophages; additionally, rSsLEAP2 could also promote the proliferation and chemotactic of peripheral blood lymphocytes (PBLs). In vivo experiments indicated that overexpression of SsLEAP2 could inhibit bacterial infection, and increase the expression level of immune genes including IL-1ß, tumor necrosis factor ligand superfamily member 13B (TNF13B) and haptoglobin (HP); conversely, knock down of SsLEAP2 promoted bacterial infection and decreased the expression level of above genes. Taken together, these results suggest that SsLEAP2 is a novel LEAP2 homolog that possesses apparent antibacterial activity and immunoregulatory property, thus plays a critical role in host defense against pathogens invasion.


Assuntos
Infecções Bacterianas , Doenças dos Peixes , Perciformes , Animais , Peixes , Proteínas de Peixes/genética , Hepcidinas/genética , Antibacterianos , Bactérias Gram-Negativas , Filogenia , Bactérias Gram-Positivas , Imunidade Inata/genética , Peptídeos Antimicrobianos
2.
Fish Shellfish Immunol ; 140: 108936, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37423401

RESUMO

IFN-γ (interferon gamma) is a critical cytokine in the immune system involved both directly and indirectly in antiviral activity, stimulation of bactericidal activity, antigen presentation and activation of macrophages via the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway. The IFN-γ function is best described in cell defense against intracellular pathogens in mammals, but IFN-γ cytokine-induced metabolic change and its role in anti-infection remain unknown in teleost fish. In this study, a novel IFN-γ (SsIFN-γ) was identified from black rockfish (Sebastes schlegeli) by rapid amplification of cDNA ends (RACE). The open reading frame (ORF) of SsIFN-γ encoded a putative protein of 215 amino acids and shares 60.2%-93.5% overall sequence identities with other teleost IFN-γ. SsIFN-γ was distributed ubiquitously in all the detected tissues and immune cells, which was highly expressed in the spleen, gills, head kidney by quantitative real-time PCR. The mRNA expression of SsIFN-γ was significantly upregulated in the spleen, head kidney, head kidney (HK) macrophages and peripheral blood lymphocytes (PBLs) during pathogen infection. Meanwhile, the recombinant protein (rSsIFN-γ) exhibited an immunomodulatory function to enhance respiratory burst activity and nitric oxide response of HK macrophages. Furthermore, rSsIFN-γ could effectively upregulate the expression of macrophage proinflammatory cytokine, the expression of JAK-STAT signaling pathway related genes and interferon-related downstream genes in the head kidney and spleen. Luciferase assays showed ISRE and GAS activity were obviously enhanced after rSsIFN-γ treatment. These results indicated that SsIFN-γ possessed apparent immunoregulatory properties and played a role in fighting pathogen infection which will be helpful to further understanding of the immunologic mechanism of teleosts IFN-γ in innate immunity.


Assuntos
Interferon gama , Perciformes , Animais , Transdução de Sinais , Janus Quinases/genética , Sequência de Aminoácidos , Fatores de Transcrição STAT/genética , Citocinas/metabolismo , Proteínas Recombinantes/genética , Mamíferos/metabolismo
3.
Fish Shellfish Immunol ; 136: 108715, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37001746

RESUMO

As an effective and broad-spectrum antimicrobial peptide, NK-Lysin is attracted more and more attention at present. However, the functions and action mechanism of NK-Lysin peptides are still not comprehensive enough at present. In this study, a sevenband grouper (Hyporthodus septemfasciatus) NK-Lysin peptide, NKHs27, was identified and synthesized, and its biological functions were studied. The results indicated that NKHs27 shares 44.44%∼88.89% overall sequence identities with other teleost NK-Lysin peptides. The following antibacterial activity assay exhibited that NKHs27 was active against both Gram-negative and Gram-positive bacteria, including Staphylococcus aureus, Listonella anguillarum, Vibrio parahaemolyticus and Vibrio vulnificus. Additionally, NKHs27 showed a synergistic effect when it was combined with rifampicin or erythromycin. In the process of interaction with the L. anguillarum cells, NKHs27 changed the cell membrane permeability and retained its morphological integrity, then penetrated into the cytoplasm to act on genomic DNA or total RNA. Then, in vitro studies showed that NKHs27 could enhance the respiratory burst ability of macrophages and upregulate immune-related genes expression in it. Moreover, NKHs27 incubation improved the proliferation of peripheral blood leukocytes significantly. Finally, in vivo studies showed that administration of NKHs27 prior to bacterial infection significantly reduced pathogen dissemination and replication in tissues. In summary, these results provide new insights into the function of NK-Lysin peptides in teleost and support that NKHs27, as a novel broad-spectrum antibacterial peptide, has potential applications in aquaculture against pathogenic infections.


Assuntos
Bass , Infecções Estafilocócicas , Animais , Bass/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/farmacologia , Proteínas de Peixes/metabolismo , Proteolipídeos/genética , Peptídeos , Antibacterianos
4.
Fish Shellfish Immunol ; 123: 369-380, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35318137

RESUMO

Natural killer lysin (NK-lysin) is a small molecule antimicrobial peptide secreted by natural killer cells and T lymphocytes. In this study, we characterized a cDNA sequence encoding an NK-lysin homologue (SsNKL1) from black rockfish, Sebastes schlegelii. The open reading frame (ORF) of SsNKL1 encodes a putative protein of 149 amino acids and shares 44%-87% overall sequence identities with other teleost NK-lysins. SsNKL1 possesses conserved NK-lysin family features, including a signal sequence and a surfactant-associated protein B (SapB) domain, sequence analysis revealed that SsNKL1 is most closely related to false kelpfish (Sebastiscus marmoratus) NK-lysin (with 87% sequence identity). SsNKL1 transcripts were detected in all the tested tissues, with the highest level in the kidney, followed by the spleen and gills. Upon Listonella anguillarum infection, the mRNA expression of SsNKL1 in the black rockfish was significantly up-regulated in the liver and kidney. The derived peptide SsNKLP27 from SsNKL1 was synthesized, and its biological function was studied. SsNKLP27 showed direct antibacterial activity against Gram-negative and Gram-positive bacteria, including Staphylococcus aureus, Bacillus subtilis, L. anguillarum, Vibrio parahaemolyticus, Vibrio alginolyticus and Vibrio vulnificus. SsNKLP27 treatment facilitated the bactericidal process of erythromycin by enhancing the permeability of the outer membrane. In the process of interaction with the target bacterial cells, SsNKLP27 changed the permeability and retained the morphological integrity of the cell membrane, then penetrated into the cytoplasm, and induced the degradation of genomic DNA and total RNA. In vivo studies showed that administration of SsNKLP27 before bacterial and viral infection significantly reduced the transmission and replication of pathogens in tissues. In vitro analysis showed that SsNKLP27 could enhance the respiratory burst ability and regulate the expression of some immune-related genes of macrophages. In summary, these results provided new insights into the function of NK-lysins in teleost fish and support that SsNKLP27 is a new broad-spectrum antimicrobial peptide that has a potential application prospect in aquaculture against pathogenic infection.


Assuntos
Anti-Infecciosos , Doenças dos Peixes , Perciformes , Vibrioses , Sequência de Aminoácidos , Animais , Antibacterianos , Doenças dos Peixes/microbiologia , Proteínas de Peixes/química , Células Matadoras Naturais , Peptídeos , Perciformes/metabolismo , Proteolipídeos/química , Proteolipídeos/genética , Vibrioses/genética , Vibrioses/veterinária
5.
Fish Shellfish Immunol ; 118: 197-204, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34509628

RESUMO

Tongue sole tissue factor pathway inhibitor 2 (TFPI-2) C-terminus derived peptide, TC38, has previously been shown to kill Vibrio vulnificus cells without lysing the cell membrane; thus, the remaining bacterial shell has potential application as an inactivated vaccine. Therefore, this study aimed to evaluate the immune response induced by the novel V. vulnificus vaccine. The protective potential of TC38-killed V. vulnificus cells (TKC) was examined in a turbot model. Fish were intramuscularly vaccinated with TKC or FKC (formalin-killed V. vulnificus cells) and challenged with a lethal-dose of V. vulnificus. The results showed that compared with FKC, TKC was effective in protecting fish against V. vulnificus infection, with relative percent of survival (RPS) rates of 53.29% and 63.64%, respectively. The immunological analysis revealed that compared with the FKC and control groups, the TKC group exhibited: 1) significantly higher respiratory burst ability and bactericidal activity of macrophages at 7 d post-vaccination; 2) increased alkaline phosphatase, acid phosphatase, lysozyme, and total superoxide dismutase levels post-vaccination; 3) higher serum agglutinating antibody titer with corresponding higher serum bactericidal ability, and a more potent serum agglutination effect, as well as an increased IgM expression level; 4) higher expression of immune relevant genes, which were involved in both innate and adaptive immunity. Taken together, this is the first study to develop a novel V. vulnificus inactivated vaccine based on AMP inactivation, and TKC is an effective vaccine against V. vulnificus infection for aquaculture.


Assuntos
Doenças dos Peixes , Linguados , Vibrioses , Vibrio vulnificus , Vibrio , Animais , Antibacterianos , Vacinas Bacterianas , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Linguados/microbiologia , Peptídeos , Vacinas de Produtos Inativados , Vibrio/imunologia , Vibrioses/prevenção & controle , Vibrioses/veterinária
6.
Fish Shellfish Immunol ; 98: 499-507, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32001355

RESUMO

Cathepsin K belongs to the family of cysteine cathepsins. It is well known that the cysteine cathepsins participate in various physiological processes and host immune defense in mammals. However, in teleost fish, the function of cathepsin K is very limited. In the present study, a cathepsin K homologue (SsCTSK) from the teleost black rockfish (Sebastes schlegelii) was identified and examined at expression and functional levels. In silico analysis showed that three domains, including signal peptide, cathepsin propeptide inhibitor I29 domain, and functional domain Pept_C1, are existed in SsCTSK. SsCTSK also possesses a peptidase domain with three catalytically essential residues (Cys25, His162 and Asn183). Phylogenetic profiling indicated that SsCTSK was evolutionally close to the cathepsin K of other teleost fish. Expression of SsCTSK occurred in multiple tissues and was induced by bacterial infection. Purified recombinant SsCTSK (rSsCTSK) exhibited apparent maximal peptidase activity at 45 °C, and its enzymatic activity was remarkably declined in the presence of the cathepsin inhibitor E-64. Moreover, rSsCTSK possesses the ability to bind with PAMPs and bacteria. Finally, knockdown of SsCTSK expression facilitated bacterial invasion in black rockfish. Collectively, these results indicated that SsCTSK functions as a cysteine protease and may serves as a target for pathogen manipulation of host defense system.


Assuntos
Catepsina K/química , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/imunologia , Perciformes , Vibrioses/veterinária , Vibrio , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Filogenia , Vibrioses/imunologia , Vibrioses/microbiologia
7.
Fish Shellfish Immunol ; 98: 508-514, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32004613

RESUMO

At present, several reports have indicated that the C-terminal peptides of tissue factor pathway inhibitor 1 (TFPI-1) were active antibacterial peptides. However, the functions of TFPI-1 C-terminal peptides in teleost are still very limited. In this study, a C-terminal peptide, TC26 (with 26 amino acids), derived from common carp (Cyprinus carpio) TFPI-1, was synthesized and investigated for its antibacterial spectrum, action mechanism, as well as the in vivo effects on bacterial invasion. Our results showed that TC26 was active against Gram-positive bacteria Micrococcus luteus and Staphylococcus aureus, as well as Gram-negative bacterium Vibrio vulnificus. TC26 treatment facilitated the bactericidal process of erythromycin by enhancing the out-membrane permeability of V. vulnificus. During the bactericidal process, TC26 killed the target bacterial cells Vibrio vulnificus, by destroying cell membrane integrity, penetrating into the cytoplasm and inducing degradation of genomic DNA and total RNA. In vivo study showed that administration of turbot with TC26 before bacterial infection significantly reduced pathogen dissemination and replication in tissues. These results indicated that TC26 is a novel and active antibacterial peptide and may play a vital role in fighting pathogenic infection in aquaculture.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Carpas/metabolismo , Proteínas de Peixes/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/veterinária , DNA Bacteriano , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Linguados
8.
Fish Shellfish Immunol ; 87: 73-81, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30615989

RESUMO

C1q-domain-containing (C1qDC) proteins, which are involved in a series of immune responses, are important pattern recognition receptors in innate immunity in vertebrates and invertebrates. Functional studies of C1qDC proteins in vertebrates are scarce. In the present study, a C1qDC protein (SsC1qDC) from the teleost black rockfish (Sebastes schlegelii) was identified and examined at expression and functional levels. The open reading frame of SsC1qDC is 636 bp, and the predicted amino acid sequence of SsC1qDC shares 62%-69% overall identity with the C1qDC proteins of several fish species. SsC1qDC possesses conserved C1qDC features, including a signal sequence and a C1q domain. SsC1qDC was expressed in different tissues and its expression was up-regulated by bacterial and viral infection. Recombinant SsC1qDC (rSsC1qDC) exhibited apparent binding activities against PAMPs including LPS and PGN. rSsC1qDC had antibacterial activity against Vibrio parahaemolyticus, and was able to enhance the phagocytic activity of macrophages towards Vibrio anguillarum. rSsC1qDC interacted with human heat-aggregated IgG. Furthermore, in the presence of rSsC1qDC, fish exhibited enhanced resistance against bacterial infection. Collectively, these results indicated that SsC1qDC serves as a pattern recognition receptor and plays a vital role in the defense system of black rockfish.


Assuntos
Complemento C1q/imunologia , Proteínas de Peixes/imunologia , Perciformes/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Sequência de Aminoácidos , Animais , Complemento C1q/química , Resistência à Doença , Doenças dos Peixes/imunologia , Proteínas de Peixes/química , Humanos , Imunoglobulina G/imunologia , Fases de Leitura Aberta , Perciformes/microbiologia , Domínios Proteicos , Receptores de Reconhecimento de Padrão/química , Vibrio/imunologia , Vibrioses/imunologia , Vibrioses/veterinária
9.
Fish Shellfish Immunol ; 84: 719-725, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30393172

RESUMO

High-mobility group box 2 (HMGB2) is a non-histone chromosomal protein that involved diverse functions such as transcriptional regulation and innate immune responses in mammalian. In teleost, very limited studies on HMGB2 proteins have been documented. Black rockfish (Sebastes schlegelii) is an economic fish species and cultured worldwide. However, the study of black rockfish about immunology is very scarce. In the present study, a HMGB2 homologue gene (SsHMGB2) was identified and characterized in black rockfish. The open reading frame of SsHMGB2 is 648 bp, and the deduced amino acid sequence of SsHMGB2 shares 74.4%-91.2% overall sequence identities with the HMGB2 proteins of several fish species. In silico analysis identified several conserved features, including two basic HMG boxes and an acidic C-terminal tail composed of 24 Asp/Glu residues. Expression of SsHMGB2 occurred in multiple tissues and was upregulated during pathogens infection. Recombinant SsHMGB2 (rSsHMGB2) exhibited apparent binding activities against DNA. In vivo studies showed that the expressions of multiple immune-related genes in head kidney were significantly enhanced when black rockfish were treated with rSsHMGB2. Furthermore, rSsHMGB2 reduced pathogen dissemination and replication in fish kidney and spleen. Taken together, these results suggest that SsHMGB2 possesses apparent immunoregulatory properties and played a role in fighting bacterial infection.


Assuntos
Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Proteína HMGB2/genética , Proteína HMGB2/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Proteína HMGB2/química , Filogenia , Alinhamento de Sequência/veterinária , Vibrio/fisiologia , Vibrioses/imunologia
10.
Fish Shellfish Immunol ; 93: 623-630, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31400512

RESUMO

Cathepsin S belong to the cathepsin L-like family of cysteine cathepsins. It is well known that Cathepsin S participate in various physiological processes and host immune defense in mammals. However, in teleost fish, the function of cathepsin S is less investigated. In the present study, a cathepsin S homologue (SsCTSS) from the teleost fish black rockfish (Sebastes schlegelii) were identified and examined at expression and functional levels. In silico analysis showed that three domains, including signal peptide, cathepsin propeptide inhibitor I29 domain, and functional domain Pept_C1, were existed in the cathepsin. SsCTSS possesses a peptidase domain with three catalytically essential residues (Cys25, His162, and Asn183). Phylogenetic profiling indicated that SsCTSS are evolutionally close to the cathepsin S of other teleost fish. The expression of SsCTSS in immune-related tissues was upregulated in a time-dependent manner upon bacterial pathogen infection. Purified recombinant SsCTSS (rSsCTSS) exhibited apparent peptidase activity, which was remarkably declined in the presence of the cathepsin inhibitor E-64. rSsCTSS showed strong binding ability to LPS and PGN, the major constituents of the outer membranes of Gram-negative and Gram-positive bacteria, respectively. rSsCTSS also exhibited the capability of agglutination to different bacteria. The knockdown of SsCTSS attenuated the ability of host to eliminate pathogenic bacteria. Taken together, our results suggested that SsCTSS functions as cysteine protease which might be involved in the antibacterial immunity of black rockfish.


Assuntos
Catepsinas/genética , Catepsinas/imunologia , Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Catepsinas/química , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Lipopolissacarídeos/farmacologia , Peptidoglicano/farmacologia , Perciformes/genética , Perciformes/imunologia , Filogenia , Alinhamento de Sequência/veterinária
11.
Fish Shellfish Immunol ; 93: 823-831, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31422181

RESUMO

Calreticulin (CRT) is a highly conserved and multi-functional protein with diverse localizations. CRT has lectin-like properties and possesses important immunological activities in mammalian. In teleost, very limited studies on CRT immunologic function have been documented. In the present study, a CRT homologue (SsCRT) was cloned, identified and characterized from black rockfish, Sebastes schlegeli, an important aquaculture species in East Asia. The full length of SsCRT cDNA is 2180 bp and encoded a polypeptide of 425 amino acids. SsCRT contains a signal peptide, three distinct structural and functional domains (N-, P- and C-domains), and an endoplasmic reticulum (ER) retrieval signal sequence (KDEL). The deduced amino acid sequence of SsCRT shares 89-92% overall sequence identities with the CRT proteins of several fish species. SsCRT was distributed ubiquitously in all the detected tissues and was highly expressed in the spleen, muscle and liver. After the infection of fish extracellular bacterial pathogen Vibrio anguillarum and intracellular bacterial pathogen Edwardsiella tarda, the mRNA transcripts of SsCRT in spleen, liver, and head kidney were significantly up-regulated. The expression patterns were time-dependent and tissue-dependent. Recombinant SsCRT (rSsCRT) exhibited apparent binding activities against different bacteria and PAMPs. In vivo studies showed that the expressions of multiple immune-related genes such as TNF13B, IL-1ß, IL-8, SAA, Hsp70, and ISG15 in head kidney were significantly enhanced when black rockfish were treated with rSsCRT. Furthermore, rSsCRT reduced pathogen dissemination and replication in fish kidney and spleen. These results indicated that SsCRT served as an immune receptor to recognize and eliminate the invading pathogens, which played a vital role in the immune response of Sebastes schlegeli. These findings provide new insights into understanding the roles of CRT proteins in immune response and pathogen infection in teleost.


Assuntos
Calreticulina/genética , Calreticulina/imunologia , Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Calreticulina/química , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Moléculas com Motivos Associados a Patógenos/farmacologia , Perciformes/genética , Perciformes/imunologia , Filogenia , Alinhamento de Sequência/veterinária , Vibrio/fisiologia , Vibrioses/imunologia , Vibrioses/veterinária
12.
Fish Shellfish Immunol ; 72: 639-645, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29183811

RESUMO

Tissue factor pathway inhibitor (TFPI)-1 is well known for its role as an inhibitor of blood coagulation. Several studies have demonstrated that the C-terminal peptides of TFPI-1 are active against a broad spectrum of microorganisms. In a previous study, we found that TO17 (with 17 amino acids), a TFPI-1 C-terminal peptide from red drum (Sciaenops ocellatus), was active against Edwardsiella tarda. In the present study, we investigated further the antimicrobial spectrum, action mode, as well as the immunostimulatory property of TO17. Our results showed that TO17 displayed antimicrobial activity against Staphylococcus aureus, Micrococcus luteus, Vibrio vulnificus, and infectious spleen and kidney necrosis virus, independent of host serum. Furthermore, the activity of TO17 was influenced by the length or type of amino acids at the N and C termini. During its interaction with V. vulnificus, TO17 exerted its antibacterial activity by destroying cell membrane integrity, penetrating the cytoplasm and inducing degradation of genomic DNA and total RNA. In addition, TO17 had no hemolytic activity against red drum blood cells. In vitro, TO17 enhanced production of nitric oxide and bactericidal activity of red drum macrophages. In vivo, administration of red drum with TO17 before bacterial infection significantly reduced pathogen dissemination and replication in tissues. These results indicate that TO17 is a broad-spectrum antimicrobial peptide with immunostimulatory properties and it has the potential to be used as an antimicrobial agent in aquaculture.


Assuntos
Doenças dos Peixes/imunologia , Lipoproteínas/genética , Lipoproteínas/imunologia , Perciformes/genética , Perciformes/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Infecções Bacterianas/imunologia , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Distribuição Aleatória , Viroses/imunologia
13.
Fish Shellfish Immunol ; 82: 469-475, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30149134

RESUMO

Tissue factor pathway inhibitor 2 (TFPI-2) is an analogue of TFPI-1 and a potent endogenous inhibitor of tissue factor (TF)-mediated blood coagulation. Previous reports have shown that several peptides derived from human and vertebrates TFPI-2 possess antibacterial activity against diverse bacteria. In this study, a C-terminal peptide, TO24 (with 24 amino acids), derived from red drum (Sciaenops ocellatus) TFPI-2, was synthesized and investigated for its antimicrobial spectrum, action mode, as well as the immune-stimulatory property. Our results indicated that TO24 was active against Gram-positive bacteria Micrococcus luteus and Staphylococcus aureus; Gram-negative bacteria Vibrio litoralis, Vibrio ichthyoenteri, Vibrio vulnificus and Vibrio scophthalmi, as well as fish megalocytivirus, infectious spleen and kidney necrosis virus (ISKNV). During its interaction with V. vulnificus, TO24 exerted its antibacterial activity by destroying cell membrane integrity, penetrating the cytoplasm and inducing degradation of genomic DNA and total RNA. In addition, TO24 had no hemolytic activity against red drum blood cells. In vitro, TO24 enhanced bactericidal activity of red drum macrophages. In vivo, administration of red drum with TO24 before bacterial infection significantly reduced pathogen dissemination and replication in tissues. These results indicate that TO24 is a broad-spectrum antimicrobial peptide with immune-stimulatory properties and it has the potential to be used as an antimicrobial agent in aquaculture.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antibacterianos/farmacologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Glicoproteínas/genética , Perciformes/genética , Perciformes/imunologia , Animais , Infecções por Vírus de DNA/imunologia , Proteínas de Peixes/metabolismo , Glicoproteínas/metabolismo , Infecções por Bactérias Gram-Positivas/imunologia , Iridoviridae/fisiologia , Micrococcus luteus/fisiologia , Distribuição Aleatória , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Vibrio/fisiologia , Vibrioses/imunologia
14.
Fish Shellfish Immunol ; 64: 104-110, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28263880

RESUMO

Tissue factor pathway inhibitor 2 (TFPI-2) is an analog of TFPI-1 and a potent endogenous inhibitor of tissue factor (TF)-mediated blood coagulation. Recent reports have proven that the C-terminal of TFPI-2 peptides in humans and several other vertebrates possesses antibacterial activity against Gram-positive and Gram-negative bacteria. In our previous study, we reported that the TFPI-2 peptide, TC38 in tongue sole (Cynoglossus semilaevis) was active against Micrococcus luteus. In this study, we further examine the antimicrobial spectrum, mechanism of action, and function of TC38 in tongue sole. Our results indicate that TC38 is active against the Gram-negative bacteria Vibrio ichthyoenteri, Vibrio litoralis, Vibrio parahaemolyticus, and Vibrio vulnificus, as well as the fish Megalocytivirus, infectious spleen and kidney necrosis virus (ISKNV). The mechanism of action of TC38 against V. vulnificus was explored. The results showed that TC38 killed V. vulnificus cells without lysis of the cell membrane. FITC-labeled TC38 was able to penetrate the cell membrane and bind to DNA and RNA, then disrupt cellular function, eventually leading to cell death. Administration of TC38 to tongue sole significantly improved its defense against V. vulnificus infection. Overall, these results indicate that TC38 is a novel peptide with a broad antimicrobial spectrum. Furthermore, the unique action of TC38 against V. vulnificus adds new insights to the mechanism of action of vertebrate TFPI peptides. Moreover, TC38 is an interesting antimicrobial agent that could be useful in the fight against pathogenic invasion in aquaculture.


Assuntos
Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Linguados , Glicoproteínas/genética , Vibrioses/veterinária , Animais , Membrana Celular/microbiologia , Membrana Celular/virologia , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/virologia , Proteínas de Peixes/metabolismo , Glicoproteínas/metabolismo , Iridoviridae/fisiologia , Ácidos Nucleicos/metabolismo , Distribuição Aleatória , Vibrio/fisiologia , Vibrioses/genética , Vibrioses/imunologia , Vibrioses/microbiologia
15.
Fish Shellfish Immunol ; 58: 563-571, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717901

RESUMO

Tissue factor pathway inhibitors (TFPIs) are Kunitz-type serine protease inhibitors that reversibly regulate the blood coagulation induced by tissue factor. TFPI family contain two members, TFPI-1 and TFPI-2. Recent studies have shown TFPI-1 and TFPI-2 also play important roles in innate immunity, however, the potential function of teleost TFPI are very limited. In this study, we characterized two TFPI (CsTFPI-1 and CsTFPI-2) molecules from half-smooth tongue sole (Cynoglossus semilaevis), examined their tissue distributions and expression patterns under pathogens stimulation as well as investigated the antibacterial activity of the C-terminal peptides. Quantitative real time RT-PCR analysis showed that constitutive CsTFPI-1 expression occurred, in increasing order, in head kidney, intestine, brain, spleen, liver, skin, gills, heart, and muscle; CsTFPI-2 was expressed, in increasing order, in the gills, intestine, skin, head kidney, liver, brain, spleen, muscle, and heart. Under Vibrio anguillarum, Streptococcus agalactiae and fish megalocytivirus stimulation, both CsTFPI-1 and CsTFPI-2 expression increased significantly in a manner that depended on the pathogen, tissue type, and infection stage, which suggested CsTFPI-1 and CsTFPI-2 play important roles in anti-bacterial and anti-viral infection. Finally, C-terminal peptides of CsTFPI-1 and CsTFPI-2, were synthesized and proved to have antibacterial effect against Micrococcus luteus that were independent of host serum. Take together, these results indicate that CsTFPI-1 and CsTFPI-2 play important roles in antimicrobial immunity of this fish.


Assuntos
Doenças dos Peixes/genética , Proteínas de Peixes/genética , Linguados , Expressão Gênica , Glicoproteínas/genética , Lipoproteínas/genética , Sequência de Aminoácidos , Animais , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/virologia , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Bactérias Gram-Negativas/fisiologia , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Bactérias Gram-Positivas/fisiologia , Infecções por Bactérias Gram-Positivas/genética , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Iridoviridae/fisiologia , Lipoproteínas/química , Lipoproteínas/metabolismo , Filogenia , Alinhamento de Sequência
16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(11): 3758-63, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30226712

RESUMO

The top emission organic light-emitting devices were fabricated on the multi-layers metal anode with co-doping method in single host system. In experiment, the multilayer Al/Mo/MoO(3) anode on silicon are deposited, systematically analyzed the effect MoO(3) thickness on the reflectance and found the mechanism of the MoO(3) thickness variation to the reflectivity of Al/Mo/MoO(3) on silicon. Experimental results showed that the luminous intensity of blue, green and red appear to change according to the current density increase, and compared with the red intensity, the luminous intensity of blue and green gradually increased. The emission in this host-guest co-doping system is considered to usually involve two emission mechanisms, energy transfer and carrier trapping, and the energy transfer and carrier trapping between the host-guest should be responsible for chromaticity coordinates shift of organic white emitting light devices. In addition, through further study, it is proved the electroluminescence intensity of dopant linearly decrease with the driving voltage applied to the device by theoretical and experimental results.

17.
iScience ; 27(8): 110420, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39104413

RESUMO

C3N4 is widely applied in the synthesis of single-atom catalysts. However, understanding on the active site and the reaction mechanism is not fully in consensus. Especially, bare studies have considered the coordination environment of the single-atomic dopant and the effect of nitrogen vacancy on C3N4. In this study, we found that the presence of nitrogen vacancies promotes the activation of water and reduces the activation energy barrier for hydrogen generation. The results show that a synergistic effect between single-atom Pt and nitrogen vacancies enables the catalyst to achieve a superior hydrogen production rate of 3,890 µmol/g/h, which is 16.8 times higher than that of pristine C3N4. Moreover, the catalyst is also applicable for photocatalytic hydrogen production from seawater without significantly decreased hydrogen production rate. This study paves the way for the rational design and optimization of next-generation photocatalysts for sustainable energy applications, particularly in solar-driven hydrogen production.

18.
World J Microbiol Biotechnol ; 29(6): 1107-16, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23386321

RESUMO

This study describes the diversity and antibacterial activity of culturable actinobacteria isolated from five species of gorgonian corals (Echinogorgia aurantiaca, Melitodes squamata, Muricella flexuosa, Subergorgia suberosa, and Verrucella umbraculum) collected in shallow water of the South China Sea. A total of 123 actinobacterial isolates were recovered using ten different isolation media, and assigned to 11 genera, including Streptomyces and Micromonospora as the dominant genera, followed by Nocardia, Verrucosispora, Nocardiopsis, Rhodococcus, Pseudonocardia, Agrococcus, Saccharomonospora, Saccharopolyspora and Dietzia. Comparable analysis indicated that the numbers of actinobacterial genera and isolates from the five gorgonian coral species varied significantly. It was found that 72 isolates displayed antibacterial activity against at least one indicator bacterium, and the antibacterial strains isolated from different gorgonians had almost the same proportion (~50 %). These results provide direct evidence for the hypotheses that gorgonian coral species contain large and diverse communities of actinobacteria, and suggest that many gorgonian-associated actinobacteria could produce some antibacterial agents to protect their hosts against pathogens. To our knowledge, this is the first report about the diversity of culturable actinobacteria isolated from gorgonian corals.


Assuntos
Actinobacteria/classificação , Actinobacteria/fisiologia , Antozoários/microbiologia , Antibiose , Biodiversidade , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Animais , Antibacterianos/metabolismo , China , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Água do Mar , Análise de Sequência de DNA
19.
Microb Ecol ; 64(3): 617-27, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22526402

RESUMO

Fungi in gorgonians are now known to cause gorgonian diseases, but little attention has been paid to the nature of fungal communities associated with gorgonians. The diversity of culturable fungi associated with six species of healthy South China Sea gorgonians were investigated using a culture-dependent method followed by analysis of fungal internal transcribed spacer sequences. A total of 121 fungal isolates were recovered and identified using the Basic Local Alignment Search Tool search program. These belonged to 41 fungal species from 20 genera. Of these, 30 species and 12 genera are new reports for gorgonians, and the genera Aspergillus and Penicillium were the most diverse and common in the six gorgonian species. Comparison of the fungal communities in the six gorgonian species, together with results from previous relevant studies, indicated that different gorgonian species and the same gorgonian species living in different geographic locations had different fungal communities. The gorgonian Dichotella gemmacea harbored the most fungal species and isolates, while Echinogorgia aurantiaca had the least fungal diversity. Among the six media used for fungal isolation, potato glucose agar yielded the highest isolates (27 isolates), while glucose peptone starch agar had the best recoverability of fungal species (15 species). The antimicrobial activity of the 121 fungal isolates was tested against three marine bacteria and two marine gorgonian pathogenic fungi. A relatively high proportion (38 %) of fungal isolates displayed distinct antibacterial and antifungal activity, suggesting that the gorgonian-associated fungi may aid their hosts in protection against pathogens. This is the first report comparing the diversity of fungal communities among the South China Sea gorgonians. It contributes to our knowledge of gorgonian-associated fungi and further increases the pool of fungi available for natural bioactive product screening.


Assuntos
Antozoários/microbiologia , Anti-Infecciosos/metabolismo , Antibiose , Bactérias/crescimento & desenvolvimento , Fungos/classificação , Fungos/crescimento & desenvolvimento , Animais , Antozoários/classificação , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Biodiversidade , China , Meios de Cultura , DNA Fúngico/análise , DNA Fúngico/genética , DNA Espaçador Ribossômico/análise , DNA Espaçador Ribossômico/genética , Fungos/genética , Fungos/isolamento & purificação , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Oceanos e Mares , Análise de Sequência de DNA , Especificidade da Espécie
20.
Curr Pharm Biotechnol ; 23(1): 148-157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33461460

RESUMO

BACKGROUND: Oxymatrine is known as one of the most promising alkaloids from Sophora flavescens for its excellent pharmacological effects. OBJECTIVE: The aim of this research is to assess the biopharmaceutical and pharmacokinetic activities of oxymatrine and clarify its mechanisms of absorption and metabolism. METHODS: The biological characteristics of oxymatrine were systematically investigated by UHPLC-MS/MS. The mechanisms of absorption and metabolism of oxymatrine were further clarified through incubation in rat liver microsomes and transport across the Caco-2 monolayer cell absorption model. RESULTS: It was found that the absolute oral bioavailability of oxymatrine was 26.43%, and the pharmacokinetic parameters Cmax, Tmax, and t1/2 were 605.5 ng/mL, 0.75 h, and 4.181 h after oral administration, indicating that oxymatrine can be absorbed quickly. The tissue distribution tests showed that oxymatrine distributed throughout all the organs, with the small intestine accumulating the highest level, followed by the kidney, stomach, and spleen. The Papp in Caco-2 cell line absorption model was over 1 × 10-5 and PDR 1.064, and t1/2 of oxymatrine in rat liver microsome in vitro was 1.042 h, indicating that oxymatrine can be absorbed easily through passive diffusion and CYP450 enzymes could be involved in its metabolism. The plasma protein binding rate of oxymatrine was 2.78 ± 0.85%. CONCLUSION: Oxymatrine can be absorbed into blood easily through passive diffusion, mainly distributed in the intestine, stomach, liver, and spleen in vivo, and CYP450 enzymes in the liver could be involved in its metabolism.


Assuntos
Alcaloides , Produtos Biológicos , Administração Oral , Animais , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Humanos , Quinolizinas , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA