Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 239(5): 1707-1722, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36843261

RESUMO

Tubulin folding cofactors (TFCs) are required for tubulin folding, α/ß tubulin heterodimer formation, and microtubule (MT) dynamics in yeast and mammals. However, the functions of their plant counterparts remain to be characterized. We identified a natural maize crumpled kernel mutant, crk2, which exhibits reductions in endosperm cell number and size, as well as embryo/seedling lethality. Map-based cloning and functional complementation confirmed that ZmTFCB is causal for the mutation. ZmTFCB is targeted mainly to the cytosol. It facilitates α-tubulin folding and heterodimer formation through sequential interactions with the cytosolic chaperonin-containing TCP-1 ε subunit ZmCCT5 and ZmTFCE, thus affecting the organization of both the spindle and phragmoplast MT array and the cortical MT polymerization and array formation, which consequently mediated cell division and cell growth. We detected a physical association between ZmTFCB and the maize MT plus-end binding protein END-BINDING1 (ZmEB1), indicating that ZmTFCB1 may modulate MT dynamics by sequestering ZmEB1. Our data demonstrate that ZmTFCB is required for cell division and cell growth through modulating MT homeostasis, an evolutionarily conserved machinery with some species-specific divergence.


Assuntos
Proteínas Associadas aos Microtúbulos , Tubulina (Proteína) , Animais , Tubulina (Proteína)/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Zea mays/genética , Zea mays/metabolismo , Microtúbulos/metabolismo , Divisão Celular , Homeostase , Mamíferos
2.
Plant Biotechnol J ; 20(8): 1487-1501, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35426230

RESUMO

Riboflavin is the precursor of essential cofactors for diverse metabolic processes. Unlike animals, plants can de novo produce riboflavin through an ancestrally conserved pathway, like bacteria and fungi. However, the mechanism by which riboflavin regulates seed development is poorly understood. Here, we report a novel maize (Zea mays L.) opaque mutant o18, which displays an increase in lysine accumulation, but impaired endosperm filling and embryo development. O18 encodes a rate-limiting bifunctional enzyme ZmRIBA1, targeted to plastid where to initiate riboflavin biosynthesis. Loss of function of O18 specifically disrupts respiratory complexes I and II, but also decreases SDH1 flavinylation, and in turn shifts the mitochondrial tricarboxylic acid (TCA) cycle to glycolysis. The deprivation of cellular energy leads to cell-cycle arrest at G1 and S phases in both mitosis and endoreduplication during endosperm development. The unexpected up-regulation of cell-cycle genes in o18 correlates with the increase of H3K4me3 levels, revealing a possible H3K4me-mediated epigenetic back-up mechanism for cell-cycle progression under unfavourable circumstances. Overexpression of O18 increases riboflavin production and confers osmotic tolerance. Altogether, our results substantiate a key role of riboflavin in coordinating cellular energy and cell cycle to modulate maize endosperm development.


Assuntos
Endosperma , Zea mays , Ciclo Celular/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Riboflavina/genética , Riboflavina/metabolismo , Sementes , Zea mays/metabolismo
3.
Acta Pharmacol Sin ; 43(11): 2841-2847, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35468993

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the pervasive side effects of chemotherapy, leading to poor quality of life in cancer patients. Discovery of powerful analgesics for CIPN is an urgent and substantial clinical need. Nerve growth factor (NGF), a classic neurotrophic factor, has been identified as a potential therapeutic target for pain. In this study, we generated a humanized NGF monoclonal antibody (DS002) that most effectively blocked the interaction between NGF and tropomyosin receptor kinase A (TrkA). We showed that DS002 blocked NGF binding to TrkA in a dose-dependent manner with an IC50 value of 6.6 nM; DS002 dose-dependently inhibited the proliferation of TF-1 cells by blocking the TrkA-mediated downstream signaling pathway. Furthermore, DS002 did not display noticeable species differences in its binding and blocking abilities. In three chemotherapy-induced rat models of CIPN, subcutaneous injection of DS002 produced a significant prophylactic effect against paclitaxel-, cisplatin- and vincristine-induced peripheral neuropathy. In conclusion, we demonstrate for the first time that an NGF inhibitor effectively alleviates pain in animal models of CIPN. DS002 has the potential to treat CIPN pain in the clinic.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Ratos , Animais , Fator de Crescimento Neural , Anticorpos Monoclonais/uso terapêutico , Qualidade de Vida , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Dor , Antineoplásicos/efeitos adversos , Receptor trkA/metabolismo
4.
Adv Exp Med Biol ; 1370: 121-128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35882787

RESUMO

Taurine (2-aminoethanesulfonic acid) is a natural amino acid that is found widely in all mammalian tissues. Several studies have demonstrated that taurine has anti-inflammatory, antioxidant, and hypoglycemic effects. Recently, taurine not only mitigates the side effects of chemotherapy in cancer but also possesses antitumor properties, including inhibiting cancer cell proliferation and inducing apoptosis in certain cancers by differential regulating proapoptotic and antiapoptotic proteins. Antitumor studies of taurine are still in their infancy, and the mechanism of its antitumor effect is not fully understood. In this regard, it is worthwhile to study the antitumor mechanism of taurine, which may provide clues to develop new synthetic therapeutic molecules. In this mini review, we summarize the main effects of taurine that have shown suppressing actions in the initiation and progression of cancers. The underlying molecular mechanism also suggested that taurine can be a potential clinical application in tumor therapy. In addition, with the in-depth study of different biological functions of taurine, we found that many systemic diseases are associated with taurine. In this review, the research progress of taurine's antitumor effect is briefly summarized including the in vivo and in vitro studies in our laboratory.


Assuntos
Apoptose , Taurina , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Proteínas Reguladoras de Apoptose , Mamíferos/metabolismo , Taurina/metabolismo , Taurina/farmacologia , Taurina/uso terapêutico
5.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807620

RESUMO

Glycyrrhizin (GL), an important active ingredient of licorice root, which weakens the proinflammatory effects of high-mobility group box 1 (HMGB1) by blocking HMGB1 signaling. In this study, we investigated whether GL could suppress inflammation and carcinogenesis in an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced murine model of colorectal cancer. ICR mice were divided into four groups (n = 5, each)-control group, GL group, colon cancer (CC) group, and GL-treated CC (CC + GL) group, and sacrificed after 20 weeks. Plasma levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α were measured using an enzyme-linked immunosorbent assay. The colonic tissue samples were immunohistochemically stained with DNA damage markers (8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxy-guanosine), inflammatory markers (COX-2 and HMGB1), and stem cell markers (YAP1 and SOX9). The average number of colonic tumors and the levels of IL-6 and TNF-α in the CC + GL group were significantly lower than those in the CC group. The levels of all inflammatory and cancer markers were significantly reduced in the CC + GL group. These results suggest that GL inhibits the inflammatory response by binding HMGB1, thereby inhibiting DNA damage and cancer stem cell proliferation and dedifferentiation. In conclusion, GL significantly attenuates the pathogenesis of AOM/DSS-induced colorectal cancer by inhibiting HMGB1-TLR4-NF-κB signaling.


Assuntos
Carcinogênese/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Ácido Glicirrízico/farmacologia , Inflamação/tratamento farmacológico , Animais , Azoximetano/farmacologia , Colo/efeitos dos fármacos , Colo/metabolismo , Neoplasias Colorretais/metabolismo , Modelos Animais de Doenças , Feminino , Proteína HMGB1/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
6.
Plant Physiol ; 180(4): 2120-2132, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31189659

RESUMO

The 26S proteasome, an essential protease complex of the ubiquitin-26S proteasome system (UPS), controls many cellular events by degrading short-lived regulatory proteins marked with polyubiquitin chains. The 20S proteolytic core protease (CP), the catalytic core of the 26S proteasome, is a central enzyme in the UPS. Its biogenesis proceeds in a multistep and orderly fashion assisted by a series of proteasome assembly chaperones. In this study, we identified a novel maize (Zea mays) kernel mutant named defective kernel40 (dek40), which produces small, collapsed kernels and exhibits delayed embryo and endosperm development. Dek40 was identified by map-based cloning and confirmed by transgenic functional complementation. Dek40 encodes a putative cytosol-localized proteasome biogenesis-associated chaperone4 (PBAC4) protein. DEK40 participates in the biogenesis of the 20S CP by interacting with PBAC3. Loss-of-function of DEK40 substantially affected 20S CP biogenesis, resulting in decreased activity of the 26S proteasome. Ubiquitylome analysis indicated that DEK40 influences the degradation of ubiquitinated proteins and plays an essential role in the maintenance of cellular protein homoeostasis. These results demonstrate that Dek40 encodes a PBAC4 chaperone that affects 20S CP biogenesis and is required for 26S proteasome function and seed development in maize.


Assuntos
Proteínas de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Sementes/enzimologia , Sementes/metabolismo , Zea mays/enzimologia , Zea mays/metabolismo , Mutação/genética , Proteínas de Plantas/genética , Complexo de Endopeptidases do Proteassoma/genética , Sementes/genética , Zea mays/genética
7.
Planta ; 250(2): 573-588, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31127375

RESUMO

MAIN CONCLUSION: The information on core components in maize polycomb repressive complex 2 (PRC2) are updated at a genome-wide scale, and the protein-protein interaction networks of PRC2 components are further provided in maize. The evolutionarily conserved polycomb group (PcG) proteins form multi-subunits polycomb repressive complexes (PRCs) that repress gene expression via chromatin condensation. In Arabidopsis, three distinct PRC2s have been identified, each determining a specific developmental program with partly functional redundancy. However, the core components and biological functions of PRC2 in cereals remain obscure. Here, we updated the information on maize PRC2 components at a genome-wide scale. Maize PRC2 subunits are highly duplicated, with five MSI1, three E(z), two ESC and two Su(z)12 homologs. ZmFIE1 is preferentially expressed in the endosperm, whereas the remaining are broadly expressed in many tissues. ZmCLF/MEZ1 and ZmFIE1 are maternally expressed imprinted genes, in contrast to the paternal-dominantly expression of ZmFIE2 in the endosperm. In maize, E(z) members likely provide a scaffold for assembling PRC2 complexes, whereas Su(z)12 and p55/MSI1-like proteins together reinforce the complex; ESC members probably determine its specificity: FIE1-PRC2 regulates endosperm cell development, whereas FIE2-PRC2 controls other cell types. The duplicated Brassicaceae-specific MEA and FIS2 also directly interact with maize PRC2 members. Together, this study establishes a roadmap for protein-protein interactions of maize PRC2 components, providing new insights into their functions in the growth and development of cereals.


Assuntos
Complexo Repressor Polycomb 2/metabolismo , Zea mays/enzimologia , Alelos , Arabidopsis/enzimologia , Arabidopsis/genética , Endosperma/enzimologia , Endosperma/genética , Endosperma/ultraestrutura , Epigenômica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Complexo Repressor Polycomb 2/genética , Domínios Proteicos , Técnicas do Sistema de Duplo-Híbrido , Zea mays/genética , Zea mays/ultraestrutura
8.
PLoS Genet ; 12(8): e1006270, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27541862

RESUMO

Cereal storage proteins are major nitrogen sources for humans and livestock. Prolamins are the most abundant storage protein in most cereals. They are deposited into protein bodies (PBs) in seed endosperm. The inner structure and the storage mechanism for prolamin PBs is poorly understood. Maize opaque10 (o10) is a classic opaque endosperm mutant with misshapen PBs. Through positional cloning, we found that O10 encodes a novel cereal-specific PB protein. Its middle domain contains a seven-repeat sequence that is responsible for its dimerization. Its C terminus contains a transmembrane motif that is required for its ER localization and PB deposition. A cellular fractionation assay indicated that O10 is initially synthesized in the cytoplasm and then anchored to the ER and eventually deposited in the PB. O10 can interact with 19-kD and 22-kD α-zeins and 16-kD and 50-kD γ-zeins through its N-terminal domain. An immunolocalization assay indicated that O10 co-localizes with 16-kD γ-zein and 22-kD α-zein in PBs, forming a ring-shaped structure at the interface between the α-zein-rich core and the γ-zein-rich peripheral region. The loss of O10 function disrupts this ring-shaped distribution of 22-kD and 16-kD zeins, resulting in misshapen PBs. These results showed that O10, as a newly evolved PB protein, is essential for the ring-shaped distribution of 22-kD and 16-kD zeins and controls PB morphology in maize endosperm.


Assuntos
Endosperma/genética , Proteínas de Plantas/genética , Zea mays/genética , Zeína/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Endosperma/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Zeína/genética
9.
New Phytol ; 214(4): 1563-1578, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28277611

RESUMO

Mitochondria are semi-autonomous organelles that are the powerhouse of the cells. Plant mitochondrial RNA editing guided by pentatricopeptide repeat (PPR) proteins is essential for energy production. We identify a maize defective kernel mutant dek36, which produces small and collapsed kernels, leading to embryos and/or seedlings lethality. Seed filling in dek36 is drastically impaired, in line with the defects observed in the organization of endosperm transfer tissue. Positional cloning reveals that DEK36, encoding a mitochondria-targeted E+ subgroup PPR protein, is required for mitochondrial RNA editing at atp4-59, nad7-383 and ccmFN -302, thus resulting in decreased activities of mitochondrial complex I, complex III and complex IV in dek36. Loss-of-function of its Arabidopsis ortholog At DEK36 causes arrested embryo and endosperm development, leading to embryo lethality. At_dek36 also has RNA editing defects in atp4, nad7, ccmFN1 and ccmFN2 , but at the nonconserved sites. Importantly, efficiency of all editing sites in ccmFN1 , ccmFN2 and rps12 is severely decreased in At_dek36, probably caused by the impairment of their RNA stabilization. These results suggest that the DEK36 orthologue pair are essential for embryo and endosperm development in both maize and Arabidopsis, but through divergent function in regulating RNA metabolism of their mitochondrial targets.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Plantas/metabolismo , Edição de RNA , Sementes/crescimento & desenvolvimento , Zea mays/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Teste de Complementação Genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Zea mays/crescimento & desenvolvimento
10.
Plant Physiol ; 170(2): 971-88, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26645456

RESUMO

Ribosome biogenesis is a fundamental cellular process in all cells. Impaired ribosome biogenesis causes developmental defects; however, its molecular and cellular bases are not fully understood. We cloned a gene responsible for a maize (Zea mays) small seed mutant, dek* (for defective kernel), and found that it encodes Ribosome export associated1 (ZmReas1). Reas1 is an AAA-ATPase that controls 60S ribosome export from the nucleus to the cytoplasm after ribosome maturation. dek* is a weak mutant allele with decreased Reas1 function. In dek* cells, mature 60S ribosome subunits are reduced in the nucleus and cytoplasm, but the proportion of actively translating polyribosomes in cytosol is significantly increased. Reduced phosphorylation of eukaryotic initiation factor 2α and the increased elongation factor 1α level indicate an enhancement of general translational efficiency in dek* cells. The mutation also triggers dramatic changes in differentially transcribed genes and differentially translated RNAs. Discrepancy was observed between differentially transcribed genes and differentially translated RNAs, indicating distinct cellular responses at transcription and translation levels to the stress of defective ribosome processing. DNA replication and nucleosome assembly-related gene expression are selectively suppressed at the translational level, resulting in inhibited cell growth and proliferation in dek* cells. This study provides insight into cellular responses due to impaired ribosome biogenesis.


Assuntos
Mutação/genética , Biossíntese de Proteínas , Ribossomos/metabolismo , Transcrição Gênica , Zea mays/genética , Proliferação de Células , Clonagem Molecular , Sequência Conservada , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Modelos Biológicos , Nucleossomos/metabolismo , Fenótipo , Filogenia , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/ultraestrutura , Regulação para Cima/genética , Zea mays/anatomia & histologia , Zea mays/crescimento & desenvolvimento , Zea mays/ultraestrutura
11.
J Exp Bot ; 68(4): 797-807, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062591

RESUMO

Seeds provide up to 70% of the energy intake of the human population, emphasizing the relevance of understanding the genetic and epigenetic mechanisms controlling seed formation. In flowering plants, seeds are the product of a double fertilization event, leading to the formation of the embryo and the endosperm surrounded by maternal tissues. Analogous to mammals, plants undergo extensive epigenetic reprogramming during both gamete formation and early seed development, a process that is supposed to be required to enforce silencing of transposable elements and thus to maintain genome stability. Global changes of DNA methylation, histone modifications, and small RNAs are closely associated with epigenome programming during plant reproduction. Here, we review current knowledge on chromatin changes occurring during sporogenesis and gametogenesis, as well as early seed development in major flowering plant models.


Assuntos
Epigênese Genética/fisiologia , Fenômenos Fisiológicos Vegetais , Arabidopsis/fisiologia , Cromatina/metabolismo , Cromatina/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Oryza/fisiologia , Fenômenos Fisiológicos Vegetais/genética , Reprodução/fisiologia , Zea mays/fisiologia
12.
Plant Cell ; 26(6): 2582-2600, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24951479

RESUMO

Proline, an important amino acid, accumulates in many plant species. Besides its role in plant cell responses to environmental stresses, the potential biological functions of proline in growth and development are unclear. Here, we report cloning and functional characterization of the maize (Zea mays) classic mutant proline responding1 (pro1) gene. This gene encodes a Δ1-pyrroline-5- carboxylate synthetase that catalyzes the biosynthesis of proline from glutamic acid. Loss of function of Pro1 significantly inhibits proline biosynthesis and decreases its accumulation in the pro1 mutant. Proline deficiency results in an increased level of uncharged tRNApro AGG accumulation and triggers the phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the pro1 mutant, leading to a general reduction in protein synthesis in this mutant. Proline deficiency also downregulates major cyclin genes at the transcriptional level, causing cell cycle arrest and suppression of cell proliferation. These processes are reversible when external proline is supplied to the mutant, suggesting that proline plays a regulatory role in the cell cycle transition. Together, the results demonstrate that proline plays an important role in the regulation of general protein synthesis and the cell cycle transition in plants.

13.
J Exp Bot ; 67(22): 6323-6335, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27789589

RESUMO

Prolamins, the major cereal seed storage proteins, are sequestered and accumulated in the lumen of the endoplasmic reticulum (ER), and are directly assembled into protein bodies (PBs). The content and composition of prolamins are the key determinants for protein quality and texture-related traits of the grain. Concomitantly, the PB-inducing fusion system provides an efficient target to produce therapeutic and industrial products in plants. However, the proteome of the native PB and the detailed mechanisms underlying its formation still need to be determined. We developed a method to isolate highly purified and intact PBs from developing maize endosperm and conducted proteomic analysis of intact PBs of zein, a class of prolamine protein found in maize. We thus identified 1756 proteins, which fall into five major categories: metabolic pathways, response to stimulus, transport, development, and growth, as well as regulation. By comparing the proteomes of crude and enriched extractions of PBs, we found substantial evidence for the following conclusions: (i) ribosomes, ER membranes, and the cytoskeleton are tightly associated with zein PBs, which form the peripheral border; (ii) zein RNAs are probably transported and localized to the PB-ER subdomain; and (iii) ER chaperones are essential for zein folding, quality control, and assembly into PBs. We futher confirmed that OPAQUE1 (O1) cannot directly interact with FLOURY1 (FL1) in yeast, suggesting that the interaction between myosins XI and DUF593-containing proteins is isoform-specific. This study provides a proteomic roadmap for dissecting zein PB biogenesis and reveals an unexpected diversity and complexity of proteins in PBs.


Assuntos
Endosperma/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Zea mays/metabolismo , Retículo Endoplasmático/metabolismo , Endosperma/química , Redes e Vias Metabólicas , Proteômica , Ribossomos/metabolismo , Proteínas de Armazenamento de Sementes/análise , Proteínas de Armazenamento de Sementes/isolamento & purificação , Zeína/metabolismo
14.
Bioorg Med Chem Lett ; 26(12): 2900-2906, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27133482

RESUMO

HCV NS5B polymerase is an attractive and validated target for anti-HCV therapy. Starting from our previously identified 2-aryl quinolones as novel non-nucleoside NS5B polymerase inhibitors, structure-based optimization furnished 2-alkyl-N-benzyl quinolones with improved antiviral potency by employing privileged fragment hybridization strategy. The N-(4-chlorobenzyl)-2-(methoxymethyl)quinolone derivative 5f proved to be the best compound of this series, exhibiting a selective sub-micromolar antiviral effect (EC50=0.4µM, SI=10.8) in Huh7.5.1 cells carrying a HCV genotype 2a. Considering the undesirable pharmacokinetic property of the highly substituted quinolones, a novel chemotype of 1,6-naphthyridine-4,5-diones were evolved via scaffold hopping, affording brand new structure HCV inhibitors with compound 6h (EC50 (gt2a)=2.5µM, SI=7.2) as a promising hit. Molecular modeling studies suggest that both of 2-alkyl quinolones and 1,6-naphthyridine-4,5-diones function as HCV NS5B thumb pocket II inhibitors.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Quinolonas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinolonas/síntese química , Quinolonas/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
15.
Antimicrob Agents Chemother ; 59(11): 7061-72, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26349829

RESUMO

Here we first identified a novel pyridazinone derivative, compound 3711, as a nonnucleosidic hepatitis B virus (HBV) inhibitor in a cell model system. 3711 decreased extracellular HBV DNA levels by 50% (50% inhibitory concentration [IC50]) at 1.5 ± 0.2 µM and intracellular DNA levels at 1.9 ± 0.1 µM, which demonstrated antiviral activity at levels far below those associated with toxicity. Both the 3TC/ETV dually resistant L180M/M204I mutant and the adefovir (ADV)-resistant A181T/N236T mutant were as susceptible to 3711 as wild-type HBV. 3711 treatment induced the formation of genome-free capsids, a portion of which migrated faster on 1.8% native agarose gel. The induced genome-free capsids sedimented more slowly in isopycnic CsCl gradient centrifugation without significant morphological changes. 3711 treatment decreased levels of HBV DNA contained in both secreted enveloped virion and naked virus particles in supernatant. 3711 could interfere with capsid formation of the core protein (Cp) assembly domain. A Cp V124W mutant, which strengthens capsid interdimer interactions, recapitulated the effect of 3711 on capsid assembly. Pyridazinone derivative 3711, a novel chemical entity and HBV inhibitor, may provide a new opportunity to combat chronic HBV infection.


Assuntos
Antivirais/farmacologia , Capsídeo/metabolismo , Vírus da Hepatite B/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Proteínas do Capsídeo/metabolismo , DNA Viral/genética , Farmacorresistência Viral
16.
Plant Physiol ; 165(2): 582-594, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24706551

RESUMO

Zeins are the major seed storage proteins in maize (Zea mays). They are synthesized on the endoplasmic reticulum (ER) and deposited into protein bodies. Failure of signal peptide cleavage from zeins can cause an opaque endosperm in the mature kernel; however, the cellular and molecular mechanisms responsible for this phenotype are not fully understood. In this study, we report the cloning and characterization of a novel, semidominant opaque mutant, floury4 (fl4). fl4 is caused by a mutated z1A 19-kD α-zein with defective signal peptide cleavage. Zein protein bodies in fl4 endosperm are misshapen and aggregated. Immunolabeling analysis indicated that fl4 participates in the assembly of zeins into protein bodies, disrupting their proper spatial distribution. ER stress is stimulated in fl4 endosperm, as illustrated by dilated rough ER and markedly up-regulated binding protein content. Further analysis confirmed that several ER stress pathways are induced in fl4 endosperm, including ER-associated degradation, the unfolded protein response, and translational suppression by the phosphorylation of eukaryotic translational initiation factor2 α-subunit. Programmed cell death is also elevated, corroborating the intensity of ER stress in fl4. These results provide new insights into cellular responses caused by storage proteins with defective signal peptides.

17.
Plant Cell ; 24(8): 3447-62, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22892319

RESUMO

Myosins are encoded by multigene families and are involved in many basic biological processes. However, their functions in plants remain poorly understood. Here, we report the functional characterization of maize (Zea mays) opaque1 (o1), which encodes a myosin XI protein. o1 is a classic maize seed mutant with an opaque endosperm phenotype but a normal zein protein content. Compared with the wild type, o1 endosperm cells display dilated endoplasmic reticulum (ER) structures and an increased number of smaller, misshapen protein bodies. The O1 gene was isolated by map-based cloning and was shown to encode a member of the plant myosin XI family (myosin XI-I). In endosperm cells, the O1 protein is associated with rough ER and protein bodies. Overexpression of the O1 tail domain (the C-terminal 644 amino acids) significantly inhibited ER streaming in tobacco (Nicotiana benthamiana) cells. Yeast two-hybrid analysis suggested an association between O1 and the ER through a heat shock protein 70-interacting protein. In summary, this study indicated that O1 influences protein body biogenesis by affecting ER morphology and motility, ultimately affecting endosperm texture.


Assuntos
Movimento Celular , Retículo Endoplasmático/metabolismo , Endosperma/metabolismo , Miosinas/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Alelos , Clonagem Molecular , Retículo Endoplasmático/genética , Endosperma/genética , Genes de Plantas , Proteínas de Choque Térmico HSP70/metabolismo , Membranas Intracelulares/metabolismo , Mutação , Miosinas/genética , Fenótipo , Filogenia , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Mapeamento de Interação de Proteínas , RNA de Plantas/genética , RNA de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Zea mays/genética , Zeína/genética , Zeína/metabolismo
18.
J Exp Bot ; 65(4): 923-38, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24363426

RESUMO

The actin-based myosin system is essential for the organization and dynamics of the endomembrane system and transport network in plant cells. Plants harbour two unique myosin groups, class VIII and class XI, and the latter is structurally and functionally analogous to the animal and fungal class V myosin. Little is known about myosins in grass, even though grass includes several agronomically important cereal crops. Here, we identified 14 myosin genes from the genome of maize (Zea mays). The relatively larger sizes of maize myosin genes are due to their much longer introns, which are abundant in transposable elements. Phylogenetic analysis indicated that maize myosin genes could be classified into class VIII and class XI, with three and 11 members, respectively. Apart from subgroup XI-F, the remaining subgroups were duplicated at least in one analysed lineage, and the duplication events occurred more extensively in Arabidopsis than in maize. Only two pairs of maize myosins were generated from segmental duplication. Expression analysis revealed that most maize myosin genes were expressed universally, whereas a few members (XI-1, -6, and -11) showed an anther-specific pattern, and many underwent extensive alternative splicing. We also found a short transcript at the O1 locus, which conceptually encoded a headless myosin that most likely functions at the transcriptional level rather than via a dominant-negative mechanism at the translational level. Together, these data provide significant insights into the evolutionary and functional characterization of maize myosin genes that could transfer to the identification and application of homologous myosins of other grasses.


Assuntos
Biologia Computacional , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Miosinas/genética , Zea mays/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Processamento Alternativo , Duplicação Gênica , Genes Reporter , Loci Gênicos , Família Multigênica , Miosinas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Transporte Proteico , RNA de Plantas/genética , Transcriptoma , Zea mays/citologia , Zea mays/metabolismo
19.
Acta Pharmacol Sin ; 35(3): 410-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24487969

RESUMO

AIM: To investigate the action of isothiafludine (NZ-4), a derivative of bis-heterocycle tandem pairs from the natural product leucamide A, on the replication cycle of hepatitis B virus (HBV) in vitro and in vivo. METHODS: HBV replication cycle was monitored in HepG2.2.15 cells using qPCR, qRT-PCR, and Southern and Northern blotting. HBV protein expression and capsid assembly were detected using Western blotting and native agarose gel electrophoresis analysis. The interaction of pregenomic RNA (pgRNA) and the core protein was investigated by RNA immunoprecipitation. To evaluate the anti-HBV effect of NZ-4 in vivo, DHBV-infected ducks were orally administered NZ-4 (25, 50 or 100 mg·kg⁻¹·d⁻¹) for 15 d. RESULTS: NZ-4 suppressed intracellular HBV replication in HepG2.2.15 cells with an IC50 value of 1.33 µmol/L, whereas the compound inhibited the cell viability with an IC50 value of 50.4 µmol/L. Furthermore, NZ-4 was active against the replication of various drug-resistant HBV mutants, including 3TC/ETV-dual-resistant and ADV-resistant HBV mutants. NZ-4 (5, 10, 20 µmol/L) concentration-dependently reduced the encapsidated HBV pgRNA, resulting in the assembly of replication-deficient capsids in HepG2.2.15 cells. Oral administration of NZ-4 dose-dependently inhibited DHBV DNA replication in the DHBV-infected ducks. CONCLUSION: NZ-4 inhibits HBV replication by interfering with the interaction between pgRNA and HBcAg in the capsid assembly process, thus increasing the replication-deficient HBV capsids. Such mechanism of action might provide a new therapeutic strategy to combat HBV infection.


Assuntos
Antivirais/farmacologia , Infecções por Hepadnaviridae/tratamento farmacológico , Vírus da Hepatite B do Pato/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Hepatite Viral Animal/tratamento farmacológico , RNA Viral/efeitos dos fármacos , Tiazóis/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Farmacorresistência Viral Múltipla/genética , Patos , Células Hep G2 , Infecções por Hepadnaviridae/virologia , Vírus da Hepatite B do Pato/genética , Vírus da Hepatite B do Pato/crescimento & desenvolvimento , Vírus da Hepatite B/genética , Vírus da Hepatite B/crescimento & desenvolvimento , Hepatite Viral Animal/virologia , Humanos , Mutação , Nucleocapsídeo/metabolismo , RNA Viral/biossíntese , Fatores de Tempo , Transfecção
20.
Sci Rep ; 14(1): 6237, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486101

RESUMO

In this study, ordinary bamboo charcoal was activated at 750 °C with a steam flow rate of 6.25 L/min for 1.5 h. The effects of triglyceride adsorption by activated bamboo charcoal were investigated using an orthogonal design, and the adsorption mechanism was explored through molecular dynamics. Experimental results revealed that the adsorption capacity of activated bamboo charcoal for triglycerides reached 27.0%. The activated bamboo charcoal exhibited a specific surface area of 560.0 m2/g. The average pore diameter of activated bamboo charcoal was 1.6 nm, whereas that of ordinary bamboo charcoal was 7.2 nm. Molecular dynamics simulations revealed an interaction energy of - 145.12 kcal/mol between the molecular layers of activated bamboo charcoal and the triglyceride molecules, as well as an interaction energy of - 132.73 kcal/mol between the molecular layers of ordinary bamboo charcoal and the triglyceride molecules. The quantity of triglyceride molecules adsorbed by activated bamboo charcoal per gram was estimated to be 1.77 × 1021 while ordinary bamboo charcoal could adsorb merely 1.56 × 1019 triglyceride molecules per gram. This stark contrast in adsorption capacity underscores the superior performance of activated bamboo charcoal than its counterpart.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA