Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 594(7861): 51-56, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079136

RESUMO

In perovskite solar cells, doped organic semiconductors are often used as charge-extraction interlayers situated between the photoactive layer and the electrodes. The π-conjugated small molecule 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9-spirobifluorene (spiro-OMeTAD) is the most frequently used semiconductor in the hole-conducting layer1-6, and its electrical properties considerably affect the charge collection efficiencies of the solar cell7. To enhance the electrical conductivity of spiro-OMeTAD, lithium bis(trifluoromethane)sulfonimide (LiTFSI) is typically used in a doping process, which is conventionally initiated by exposing spiro-OMeTAD:LiTFSI blend films to air and light for several hours. This process, in which oxygen acts as the p-type dopant8-11, is time-intensive and largely depends on ambient conditions, and thus hinders the commercialization of perovskite solar cells. Here we report a fast and reproducible doping method that involves bubbling a spiro-OMeTAD:LiTFSI solution with CO2 under ultraviolet light. CO2 obtains electrons from photoexcited spiro-OMeTAD, rapidly promoting its p-type doping and resulting in the precipitation of carbonates. The CO2-treated interlayer exhibits approximately 100 times higher conductivity than a pristine film while realizing stable, high-efficiency perovskite solar cells without any post-treatments. We also show that this method can be used to dope π-conjugated polymers.

2.
Nature ; 575(7784): 639-642, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31776492

RESUMO

Electrochemical carbon dioxide (CO2) reduction can in principle convert carbon emissions to fuels and value-added chemicals, such as hydrocarbons and alcohols, using renewable energy, but the efficiency of the process is limited by its sluggish kinetics1,2. Molecular catalysts have well defined active sites and accurately tailorable structures that allow mechanism-based performance optimization, and transition-metal complexes have been extensively explored in this regard. However, these catalysts generally lack the ability to promote CO2 reduction beyond the two-electron process to generate more valuable products1,3. Here we show that when immobilized on carbon nanotubes, cobalt phthalocyanine-used previously to reduce CO2 to primarily CO-catalyses the six-electron reduction of CO2 to methanol with appreciable activity and selectivity. We find that the conversion, which proceeds via a distinct domino process with CO as an intermediate, generates methanol with a Faradaic efficiency higher than 40 per cent and a partial current density greater than 10 milliamperes per square centimetre at -0.94 volts with respect to the reversible hydrogen electrode in a near-neutral electrolyte. The catalytic activity decreases over time owing to the detrimental reduction of the phthalocyanine ligand, which can be suppressed by appending electron-donating amino substituents to the phthalocyanine ring. The improved molecule-based electrocatalyst converts CO2 to methanol with considerable activity and selectivity and with stable performance over at least 12 hours.


Assuntos
Dióxido de Carbono , Eletroquímica , Dióxido de Carbono/química , Catálise , Indóis/química , Metanol/síntese química , Nanotubos de Carbono/química , Compostos Organometálicos/química
3.
J Am Chem Soc ; 146(23): 16348-16354, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38806413

RESUMO

Molecular catalysts such as cobalt phthalocyanine (CoPc) exhibit remarkable electrochemical activity in methanol production from CO2 or CO, but fast conversion with a high current density is still yet to be realized. While adopting flow cells with gas diffusion electrodes is a common approach to enhanced reaction rates, the current scientific and engineering knowledge primarily centers on metal particle-based catalysts like Cu. This focus overlooks the emerging heterogenized molecular catalysts with distinct physical and chemical properties. In this work, we observe that the partial current density of CO reduction to methanol catalyzed by tetraamine-substituted CoPc (CoPc-NH2) supported on carbon nanotubes (CNTs) remains below 30 mA cm-2, even with systematic optimization of structural and operational parameters of the flow cell. A comparative analysis with a Cu metal catalyst reveals that the porous and electrolyte-philic nature of CoPc-NH2/CNT leaves a large fraction of active sites deprived of CO under reaction conditions. To address this microenvironmental challenge, we directly use CO2 as the reactant, leveraging its faster diffusion rate in water compared to CO. Effective CO2 reduction generates CO in situ to feed the catalytic sites, achieving an unprecedently high partial current density for methanol of 129 mA cm-2. This research underscores the necessity for new insights and approaches in the development of molecular catalyst-based electrodes.

4.
J Am Chem Soc ; 146(12): 8486-8491, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483834

RESUMO

Electrochemical reactions and their catalysis are important for energy and environmental applications, such as carbon neutralization and water purification. However, the synergy in electrocatalysis between CO2 utilization and wastewater treatment has not been explored. In this study, we find that the electrochemical reduction of chlorinated organic compounds such as 1,2-dichloroethane, trichloroethylene, and tetrachloroethylene into ethylene in aqueous media, which is a category of challenging reactions due to the competition of H2 evolution, can be substantially enhanced by simultaneously carrying out the reduction of CO2 on an easily prepared and cost-effective Cu metal catalyst. In the case of 1,2-dichloroethane dechlorination, a 6-fold improvement in Faradaic efficiency and a 19-fold increase in partial current density are demonstrated. Through electrochemical kinetic studies, in situ Raman spectroscopy, and computational simulations, we further find that CO2 reduction reduces hydrogen coverage on the Cu catalyst, which not only exposes more active sites for the dechlorination reaction but also enhances the effective reductive potential on the catalyst surface and reduces the kinetic barrier of the rate-determining step.

5.
J Am Chem Soc ; 146(3): 2267-2274, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207288

RESUMO

Efficient and stable photoelectrochemical reduction of CO2 into highly reduced liquid fuels remains a formidable challenge, which requires an innovative semiconductor/catalyst interface to tackle. In this study, we introduce a strategy involving the fabrication of a silicon micropillar array structure coated with a superhydrophobic fluorinated carbon layer for the photoelectrochemical conversion of CO2 into methanol. The pillars increase the electrode surface area, improve catalyst loading and adhesion without compromising light absorption, and help confine gaseous intermediates near the catalyst surface. The superhydrophobic coating passivates parasitic side reactions and further enhances local accumulation of reaction intermediates. Upon one-electron reduction of the molecular catalyst, the semiconductor-catalyst interface changes from adaptive to buried junctions, providing a sufficient thermodynamic driving force for CO2 reduction. These structures together create a unique microenvironment for effective reduction of CO2 to methanol, leading to a remarkable Faradaic efficiency reaching 20% together with a partial current density of 3.4 mA cm-2, surpassing the previous record based on planar silicon photoelectrodes by a notable factor of 17. This work demonstrates a new pathway for enhancing photoelectrocatalytic CO2 reduction through meticulous interface and microenvironment tailoring and sets a benchmark for both Faradaic efficiency and current density in solar liquid fuel production.

6.
Gerontology ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857587

RESUMO

INTRODUCTION: Anxiety and depression are prevalent among older adults, and digital interactive interventions have shown promise in promoting their mental well-being. However, limited research has explored the effects of different types of digital interactive interventions across various devices on anxiety and depression in older adults with different health conditions. METHODS: A systematic literature review and meta-analysis were conducted using seven selected databases to identify relevant studies up to July 19, 2023. Two reviewers independently conducted study selection, data extraction, and quality appraisals. The risk of bias in the included studies was assessed using the Cochrane risk-of-bias tool. For the meta-analysis, the effect size was calculated as the standardized mean difference (SMD) using a random effects model. RESULTS: A total of 20 randomized control trails involving 1309 older adults fulfilled inclusion criteria. The meta-analysis results demonstrates that the digital interactive intervention technologies had a significance on Depression (SMD = -0.656 s, 95% CI = -0.992 to -0.380, P < 0.001) and Anxiety (SMD = -0.381s, 95% CI = -0.517 to -0.245, P < 0.001). Physical Interactive interventions demonstrated a significant effect on depression and anxiety (SMD = -0.711s, 95% CI = -1.102 to -0.319, P < 0.001) and (SMD = -0.573s, 95% CI = -0.910 to -0.236, P = 0.001). Similarly, Immersive Interactive interventions also showed a significant effect on depression and anxiety (SMD = -0.699s, 95% CI = -1.026 to -0.373, P < 0.001) and (SMD = -0.343s, 95% CI = -0.493 to -0.194, P < 0.001). Additionally, in the Internal Medicine group, significant intervention effects were observed for depression (SMD = -0.388, 95% CI = -0.630 to -0.145, P = 0.002) and anxiety (SMD = -0.325, 95% CI = -0.481 to -0.169, P < 0.001). Similarly, in the Neurocognitive Disorders group, significant intervention effects were found for depression (SMD = -0.702, 95% CI = -0.991 to -0.413, P < 0.001) and anxiety (SMD = -0.790, 95% CI = -1.237 to -0.342, P = 0.001). CONCLUSION: The results indicated that various digital interactive devices, including physical and immersive interactive devices, have a positive impact on depression and anxiety among older adults. However, mobile games were not effective in addressing depression. Digital interactive technologies did not significantly influence anxiety intervention, except for elderly individuals undergoing surgical procedures. Nevertheless, these interventions effectively addressed depression and anxiety in older individuals with neurocognitive disorders, internal medical issues, and those without health issues.

7.
Gerontology ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843781

RESUMO

INTRODUCTION: Smart healthcare technologies exhibit the great potential to support older Hong Kong adults with their health problems. Although there are various smart healthcare technologies in the Hong Kong market, and some adoption predictors have been proposed and investigated, little is known about older users' views on and real-life experiences with these technologies. This exploratory study examined the experiences, functional needs and barriers of three kinds of smart healthcare technology (i.e., smart wearable devices, smart health monitors, and healthcare applications) with older adults in real-life. METHODS: A convenience sampling method was applied to recruit twenty-two older adults from the Hong Kong community. The interview was designed in semi-structured and conducted in a face-to-face setting. The content analysis was used to summarize the older adults' functional needs and barriers in real-life. RESULTS: We found older adults mainly applied SHCTs to address physical health, but there are few technological solutions for mental health in practice. There are four types of barriers in using smart healthcare technology. However, social support in Hong Kong community greatly help to reduce the barriers in technology use. Based on the findings, we discussed the possible solutions based on the social and technology perspective. CONCLUSION: Current technologies still could not fully address older adults needs for healthy aging and various barriers still hinder the actual adoption. By deeply understanding and considering the social context, technology innovation can facilitate the adoption of smart healthcare technology and promote a healthy aging society.

8.
BMC Geriatr ; 24(1): 125, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302872

RESUMO

BACKGROUND: Falls pose a severe threat to the health of older adults worldwide. Determining gait and kinematic parameters that are related to an increased risk of falls is essential for developing effective intervention and fall prevention strategies. This study aimed to investigate the discriminatory parameter, which lay an important basis for developing effective clinical screening tools for identifying high-fall-risk older adults. METHODS: Forty-one individuals aged 65 years and above living in the community participated in this study. The older adults were classified as high-fall-risk and low-fall-risk individuals based on their BBS scores. The participants wore an inertial measurement unit (IMU) while conducting the Timed Up and Go (TUG) test. Simultaneously, a depth camera acquired images of the participants' movements during the experiment. After segmenting the data according to subtasks, 142 parameters were extracted from the sensor-based data. A t-test or Mann-Whitney U test was performed on the parameters for distinguishing older adults at high risk of falling. The logistic regression was used to further quantify the role of different parameters in identifying high-fall-risk individuals. Furthermore, we conducted an ablation experiment to explore the complementary information offered by the two sensors. RESULTS: Fifteen participants were defined as high-fall-risk individuals, while twenty-six were defined as low-fall-risk individuals. 17 parameters were tested for significance with p-values less than 0.05. Some of these parameters, such as the usage of walking assistance, maximum angular velocity around the yaw axis during turn-to-sit, and step length, exhibit the greatest discriminatory abilities in identifying high-fall-risk individuals. Additionally, combining features from both devices for fall risk assessment resulted in a higher AUC of 0.882 compared to using each device separately. CONCLUSIONS: Utilizing different types of sensors can offer more comprehensive information. Interpreting parameters to physiology provides deeper insights into the identification of high-fall-risk individuals. High-fall-risk individuals typically exhibited a cautious gait, such as larger step width and shorter step length during walking. Besides, we identified some abnormal gait patterns of high-fall-risk individuals compared to low-fall-risk individuals, such as less knee flexion and a tendency to tilt the pelvis forward during turning.


Assuntos
Vida Independente , Equilíbrio Postural , Humanos , Idoso , Equilíbrio Postural/fisiologia , Marcha/fisiologia , Caminhada , Medição de Risco/métodos , Acidentes por Quedas/prevenção & controle
9.
J Med Internet Res ; 26: e54375, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787601

RESUMO

BACKGROUND: With the development of emerging technologies, digital behavior change interventions (DBCIs) help to maintain regular physical activity in daily life. OBJECTIVE: To comprehensively understand the design implementations of habit formation techniques in current DBCIs, a systematic review was conducted to investigate the implementations of behavior change techniques, types of habit formation techniques, and design strategies in current DBCIs. METHODS: The process of this review followed the PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analyses) guidelines. A total of 4 databases were systematically searched from 2012 to 2022, which included Web of Science, Scopus, ACM Digital Library, and PubMed. The inclusion criteria encompassed studies that used digital tools for physical activity, examined behavior change intervention techniques, and were written in English. RESULTS: A total of 41 identified research articles were included in this review. The results show that the most applied behavior change techniques were the self-monitoring of behavior, goal setting, and prompts and cues. Moreover, habit formation techniques were identified and developed based on intentions, cues, and positive reinforcement. Commonly used methods included automatic monitoring, descriptive feedback, general guidelines, self-set goals, time-based cues, and virtual rewards. CONCLUSIONS: A total of 32 commonly design strategies of habit formation techniques were summarized and mapped to the proposed conceptual framework, which was categorized into target-mediated (generalization and personalization) and technology-mediated interactions (explicitness and implicitness). Most of the existing studies use the explicit interaction, aligning with the personalized habit formation techniques in the design strategies of DBCIs. However, implicit interaction design strategies are lacking in the reviewed studies. The proposed conceptual framework and potential solutions can serve as guidelines for designing strategies aimed at habit formation within DBCIs.


Assuntos
Hábitos , Humanos , Terapia Comportamental/métodos , Exercício Físico , Comportamentos Relacionados com a Saúde
10.
J Neuroeng Rehabil ; 21(1): 85, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807117

RESUMO

BACKGROUND: Sensor-based interventions (SI) have been suggested as an alternative rehabilitation treatment to improve older adults' functional performance. However, the effectiveness of different sensor technologies in improving gait and balance remains unclear and requires further investigation. METHODS: Ten databases (Academic Search Premier; Cumulative Index to Nursing and Allied Health Literature, Complete; Cochrane Central Register of Controlled Trials; MEDLINE; PubMed; Web of Science; OpenDissertations; Open grey; ProQuest; and Grey literature report) were searched for relevant articles published up to December 20, 2022. Conventional functional assessments, including the Timed Up and Go (TUG) test, normal gait speed, Berg Balance Scale (BBS), 6-Minute Walk Test (6MWT), and Falling Efficacy Scale-International (FES-I), were used as the evaluation outcomes reflecting gait and balance performance. We first meta-analyzed the effectiveness of SI, which included optical sensors (OPTS), perception sensors (PCPS), and wearable sensors (WS), compared with control groups, which included non-treatment intervention (NTI) and traditional physical exercise intervention (TPEI). We further conducted sub-group analysis to compare the effectiveness of SI (OPTS, PCPS, and WS) with TPEI groups and compared each SI subtype with control (NTI and TPEI) and TPEI groups. RESULTS: We scanned 6255 articles and performed meta-analyses of 58 selected trials (sample size = 2713). The results showed that SI groups were significantly more effective than control or TPEI groups (p < 0.000) in improving gait and balance performance. The subgroup meta-analyses between OPTS groups and TPEI groups revealed clear statistically significant differences in effectiveness for TUG test (mean difference (MD) = - 0.681 s; p < 0.000), normal gait speed (MD = 4.244 cm/s; p < 0.000), BBS (MD = 2.325; p = 0.001), 6MWT (MD = 25.166 m; p < 0.000), and FES-I scores (MD = - 2.036; p = 0.036). PCPS groups also presented statistically significant differences with TPEI groups in gait and balance assessments for normal gait speed (MD = 4.382 cm/s; p = 0.034), BBS (MD = 1.874; p < 0.000), 6MWT (MD = 21.904 m; p < 0.000), and FES-I scores (MD = - 1.161; p < 0.000), except for the TUG test (MD = - 0.226 s; p = 0.106). There were no statistically significant differences in TUG test (MD = - 1.255 s; p = 0.101) or normal gait speed (MD = 6.682 cm/s; p = 0.109) between WS groups and control groups. CONCLUSIONS: SI with biofeedback has a positive effect on gait and balance improvement among a mixed population of older adults. Specifically, OPTS and PCPS groups were statistically better than TPEI groups at improving gait and balance performance, whereas only the group comparison in BBS and 6MWT can reach the minimal clinically important difference. Moreover, WS groups showed no statistically or clinically significant positive effect on gait and balance improvement compared with control groups. More studies are recommended to verify the effectiveness of specific SI. Research registration PROSPERO platform: CRD42022362817. Registered on 7/10/2022.


Assuntos
Marcha , Equilíbrio Postural , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Equilíbrio Postural/fisiologia , Idoso , Marcha/fisiologia , Dispositivos Eletrônicos Vestíveis
11.
Angew Chem Int Ed Engl ; 63(2): e202310623, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37820079

RESUMO

Many metal coordination compounds catalyze CO2 electroreduction to CO, but cobalt phthalocyanine hybridized with conductive carbon such as carbon nanotubes is currently the only one that can generate methanol. The underlying structure-reactivity correlation and reaction mechanism desperately demand elucidation. Here we report the first in situ X-ray absorption spectroscopy characterization, combined with ex situ spectroscopic and electrocatalytic measurements, to study CoPc-catalyzed CO2 reduction to methanol. Molecular dispersion of CoPc on CNT surfaces, as evidenced by the observed electronic interaction between the two, is crucial to fast electron transfer to the active sites and multi-electron CO2 reduction. CO, the key intermediate in the CO2 -to-methanol pathway, is found to be labile on the active site, which necessitates a high local concentration in the microenvironment to compete with CO2 for active sites and promote methanol production. A comparison of the electrocatalytic performance of structurally related porphyrins indicates that the bridging aza-N atoms of the Pc macrocycle are critical components of the CoPc active site that produces methanol. In situ X-ray absorption spectroscopy identifies the active site as Co(I) and supports an increasingly non-centrosymmetric Co coordination environment at negative applied potential, likely due to the formation of a Co-CO adduct during the catalysis.

12.
J Am Chem Soc ; 145(13): 7390-7396, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36952313

RESUMO

The Li-S chemistry is thermodynamically promising for high-density energy storage but kinetically challenging. Over the past few years, many catalyst materials have been developed to improve the performance of Li-S batteries and their catalytic role has been increasingly accepted. However, the classic catalytic behavior, i.e., reduction of reaction barrier, has not been clearly observed. Crucial mechanistic questions, including what specific step is limiting the reaction rate, whether/how it can be catalyzed, and how the catalysis is sustained after the catalyst surface is covered by solid products, remain unanswered. Herein, we report the first identification of the potential-limiting step of Li-S batteries operating under lean electrolyte conditions and its catalysis that conforms to classic catalysis principles, where the catalyst lowers the kinetic barrier of the potential-limiting step and accelerates the reaction without affecting the product composition. After carefully examining the electrochemistry under lean electrolyte conditions, we update the pathway of the Li-S battery reaction: S8 solid is first reduced to Li2S8 and Li2S4 molecular species sequentially; the following reduction of Li2S4 to a Li2S2-Li2S solid with an almost constant ratio of 1:4 is the potential-limiting step; the previously believed Li2S2-to-Li2S solid-solid conversion does not occur; and the recharging reaction is relatively fast. We further demonstrate that supported cobalt phthalocyanine molecules can effectively catalyze the potential-limiting step. After Li2S2/Li2S buries the active sites, it can self-catalyze the reaction and continue driving the discharging process.

13.
J Am Chem Soc ; 145(38): 20739-20744, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37703184

RESUMO

Carbon nitride materials can be hosts for transition metal sites, but Mössbauer studies on iron complexes in carbon nitrides have always shown a mixture of environments and oxidation states. Here we describe the synthesis and characterization of a crystalline carbon nitride with stoichiometric iron sites that all have the same environment. The material (formula C6N9H2Fe0.4Li1.2Cl, abbreviated PTI/FeCl2) is derived from reacting poly(triazine imide)·LiCl (PTI/LiCl) with a low-melting FeCl2/KCl flux, followed by anaerobic rinsing with methanol. X-ray diffraction, X-ray absorption and Mössbauer spectroscopies, and SQUID magnetometry indicate that there are tetrahedral high-spin iron(II) sites throughout the material, all having the same geometry. The material is active for electrocatalytic nitrate reduction to ammonia, with a production rate of ca. 0.1 mmol cm-2 h-1 and Faradaic efficiency of ca. 80% at -0.80 V vs RHE.

14.
Inorg Chem ; 62(5): 2359-2375, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36693077

RESUMO

Eleven 2,2'-bipyridine (bpy) ligands functionalized with attachment groups for covalent immobilization on silicon surfaces were prepared. Five of the ligands feature silatrane functional groups for attachment to metal oxide coatings on the silicon surfaces, while six contain either alkene or alkyne functional groups for attachment to hydrogen-terminated silicon surfaces. The bpy ligands were coordinated to Re(CO)5Cl to form complexes of the type Re(bpy)(CO)3Cl, which are related to known catalysts for CO2 reduction. Six of the new complexes were characterized using X-ray crystallography. As proof of principle, four molecular Re complexes were immobilized on either a thin layer of TiO2 on silicon or hydrogen-terminated silicon. The surface-immobilized complexes were characterized using X-ray photoelectron spectroscopy, IR spectroscopy, and cyclic voltammetry (CV) in the dark and for one representative example in the light. The CO stretching frequencies of the attached complexes were similar to those of the pure molecular complexes, but the CVs were less analogous. For two of the complexes, comparison of the electrocatalytic CO2 reduction performance showed lower CO Faradaic efficiencies for the immobilized complexes than the same complex in solution under similar conditions. In particular, a complex containing a silatrane linked to bpy with an amide linker showed poor catalytic performance and control experiments suggest that amide linkers in conjugation with a redox-active ligand are not stable under highly reducing conditions and alkyl linkers are more stable. A conclusion of this work is that understanding the behavior of molecular Re catalysts attached to semiconducting silicon is more complicated than related complexes, which have previously been immobilized on metallic electrodes.

15.
Environ Sci Technol ; 57(18): 7309-7320, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37094280

RESUMO

Electrocatalytic water treatment has emerged in the limelight of scientific interest, yet its long-term viability remains largely in the dark. Herein, we present for the first time a comprehensive framework on how to optimize pulsed electrolysis to bolster catalyst impurity tolerance and overall longevity. By examining real wastewater constituents and assessing different catalyst designs, we deconvolute the complexities associated with key pulsing parameters to formulate optimal sequences that maximize operational lifetime. We showcase our approach for cathodic H2O2 electrosynthesis, selected for its widespread importance to wastewater treatment. Our results unveil superior performance for a boron-doped carbon catalyst over state-of-the-art oxidized carbon, with high selectivity (>75%) and near complete recoveries in overpotentials even in the presence of highly detrimental Ni2+ and Zn2+ impurities. We then adapt these fine-tuned settings, obtained under a three-electrode arrangement, for practical two-electrode operation using a novel strategy that conserves the desired electrochemical potentials at the catalytic interface. Even under various impurity concentrations, our pulses substantially improve long-term H2O2 production to 287 h and 35 times that attainable via conventional electrolysis. Our findings underscore the versatility of pulsed electrolysis necessary for developing more practical water treatment technologies.


Assuntos
Carbono , Peróxido de Hidrogênio , Boro , Oxirredução , Eletrólise/métodos , Eletrodos
16.
J Fish Dis ; 46(1): 67-74, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36169647

RESUMO

The parasitic dinoflagellates of the genus Hematodinium have been considered one of the most important emerging pathogens for a broad range of marine crustaceans around the world. In China, frequent outbreaks of Hematodinium infections have caused serious economic losses for local farmers since 2004. Wild crabs were recently indicated to play a vital role in the transmission and spreading of the Hematodinium disease in polyculture pond systems. Based on PCR amplification and histopathological examination, we demonstrated that H. perezi can naturally infect a wild crab species, Hemigrapsus takanoi, which were collected from the waterways located on the coast of Rizhao or Weifang, Shandong Peninsula, China. According to the sequence similarity analysis and phylogenetic analysis, the Hematodinium isolates were identified as H. perezi and belonged to genotype II. The prevalence of H. perezi ranged from 3.3% to 5.7% in H. takanoi originating from Rizhao (n = 165 wild crabs) and from 0.9% to 20.0% in that originating from Weifang (n = 1386 wild crabs), respectively. To our knowledge, H. takanoi is, for the first time, reported as a new host for Hematodinium. Given the wide distribution of H. takanoi on the coasts along the Shandong Peninsula and the relative high prevalence of infection we monitored in our study, we speculate that H. takanoi contributes to the introducing and spreading parasitic Hematodinium between ponds via waterways in a poly-culturing system. Findings in this study broaden the host range of this parasite and expand the scope of our surveillance for Hematodinium disease in China.


Assuntos
Doenças dos Peixes , Animais , Filogenia , China
17.
Sensors (Basel) ; 23(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37766060

RESUMO

Routine assessments of gait and balance have been recognized as an effective approach for preventing falls by issuing early warnings and implementing appropriate interventions. However, current limited public healthcare resources cannot meet the demand for continuous monitoring of deteriorations in gait and balance. The objective of this study was to develop and evaluate the feasibility of a prototype surrogate system driven by sensor technology and multi-sourced heterogeneous data analytics, for gait and balance assessment and monitoring. The system was designed to analyze users' multi-mode data streams collected via inertial sensors and a depth camera while performing a 3-m timed up and go test, a five-times-sit-to-stand test, and a Romberg test, for predicting scores on clinical measurements by physiotherapists. Generalized regression of sensor data was conducted to build prediction models for gait and balance estimations. Demographic correlations with user acceptance behaviors were analyzed using ordinal logistic regression. Forty-four older adults (38 females) were recruited in this pilot study (mean age = 78.5 years, standard deviation [SD] = 6.2 years). The participants perceived that using the system for their gait and balance monitoring was a good idea (mean = 5.45, SD = 0.76) and easy (mean = 4.95, SD = 1.09), and that the system is useful in improving their health (mean = 5.32, SD = 0.83), is trustworthy (mean = 5.04, SD = 0.88), and has a good fit between task and technology (mean = 4.97, SD = 0.84). In general, the participants showed a positive intention to use the proposed system in their gait and balance management (mean = 5.22, SD = 1.10). Demographic correlations with user acceptance are discussed. This study provides preliminary evidence supporting the feasibility of using a sensor-technology-augmented system to manage the gait and balance of community-dwelling older adults. The intervention is validated as being acceptable, viable, and valuable.


Assuntos
Vida Independente , Equilíbrio Postural , Feminino , Humanos , Idoso , Hong Kong , Estudos de Viabilidade , Projetos Piloto , Estudos de Tempo e Movimento , Marcha , Tecnologia
18.
Angew Chem Int Ed Engl ; 62(30): e202305251, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37235523

RESUMO

Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium-modified carbon-supported cobalt (K+ -Co-C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus-pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+ -Co-C catalyst shows a record-high photothermal CO2 hydrogenation rate of 758 mmol gcat -1 h-1 (2871 mmol gCo -1 h-1 ) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production.

19.
Angew Chem Int Ed Engl ; 62(23): e202302152, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972027

RESUMO

We report a ternary hybrid photocatalyst architecture with tailored interfaces that boost the utilization of solar energy for photochemical CO2 reduction by synergizing electron and heat flows in the photocatalyst. The photocatalyst comprises cobalt phthalocyanine (CoPc) molecules assembled on multiwalled carbon nanotubes (CNTs) that are decorated with nearly monodispersed cadmium sulfide quantum dots (CdS QDs). The CdS QDs absorb visible light and generate electron-hole pairs. The CNTs rapidly transfer the photogenerated electrons from CdS to CoPc. The CoPc molecules then selectively reduce CO2 to CO. The interfacial dynamics and catalytic behavior are clearly revealed by time-resolved and in situ vibrational spectroscopies. In addition to serving as electron highways, the black body property of the CNT component can create local photothermal heating to activate amine-captured CO2 , namely carbamates, for direct photochemical conversion without additional energy input.

20.
Angew Chem Int Ed Engl ; 62(4): e202215213, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36445830

RESUMO

We report a precious-metal-free molecular catalyst-based photocathode that is active for aqueous CO2 reduction to CO and methanol. The photoelectrode is composed of cobalt phthalocyanine molecules anchored on graphene oxide which is integrated via a (3-aminopropyl)triethoxysilane linker to p-type silicon protected by a thin film of titanium dioxide. The photocathode reduces CO2 to CO with high selectivity at potentials as mild as 0 V versus the reversible hydrogen electrode (vs RHE). Methanol production is observed at an onset potential of -0.36 V vs RHE, and reaches a peak turnover frequency of 0.18 s-1 . To date, this is the only molecular catalyst-based photoelectrode that is active for the six-electron reduction of CO2 to methanol. This work puts forth a strategy for interfacing molecular catalysts to p-type semiconductors and demonstrates state-of-the-art performance for photoelectrochemical CO2 reduction to CO and methanol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA