Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 170(5): 899-912.e10, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28803727

RESUMO

Microsatellite repeat expansions in DNA produce pathogenic RNA species that cause dominantly inherited diseases such as myotonic dystrophy type 1 and 2 (DM1/2), Huntington's disease, and C9orf72-linked amyotrophic lateral sclerosis (C9-ALS). Means to target these repetitive RNAs are required for diagnostic and therapeutic purposes. Here, we describe the development of a programmable CRISPR system capable of specifically visualizing and eliminating these toxic RNAs. We observe specific targeting and efficient elimination of microsatellite repeat expansion RNAs both when exogenously expressed and in patient cells. Importantly, RNA-targeting Cas9 (RCas9) reverses hallmark features of disease including elimination of RNA foci among all conditions studied (DM1, DM2, C9-ALS, polyglutamine diseases), reduction of polyglutamine protein products, relocalization of repeat-bound proteins to resemble healthy controls, and efficient reversal of DM1-associated splicing abnormalities in patient myotubes. Finally, we report a truncated RCas9 system compatible with adeno-associated viral packaging. This effort highlights the potential of RCas9 for human therapeutics.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Terapia Genética/métodos , Oligonucleotídeos Antissenso/farmacologia , Animais , Células COS , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Repetições de Microssatélites , Splicing de RNA , Expansão das Repetições de Trinucleotídeos
2.
J Am Chem Soc ; 144(3): 1416-1430, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35015530

RESUMO

Amyloid imaging by positron emission tomography (PET) is an important method for diagnosing neurodegenerative disorders such as Alzheimer's disease. Many 11C- and 18F-labeled PET tracers show varying binding capacities, specificities, and affinities for their target proteins. The structural basis of these variations is poorly understood. Here we employ 19F and 13C solid-state NMR to investigate the binding sites of a PET ligand, flutemetamol, to the 40-residue Alzheimer's ß-amyloid peptide (Aß40). Analytical high-performance liquid chromatography and 19F NMR spectra show that flutemetamol binds the current Aß40 fibril polymorph with a stoichiometry of one ligand per four to five peptides. Half of the ligands are tightly bound while the other half are loosely bound. 13C and 15N chemical shifts indicate that this Aß40 polymorph has an immobilized N-terminus, a non-ß-sheet His14, and a non-ß-sheet C-terminus. We measured the proximity of the ligand fluorine to peptide residues using 19F-13C and 19F-1H rotational-echo double-resonance (REDOR) experiments. The spectra show that three segments in the peptide, 12VHH14, 18VFF20, and 39VV40, lie the closest to the ligand. REDOR-constrained docking simulations indicate that these three segments form multiple binding sites, and the ligand orientations and positions at these sites are similar across different Aß polymorphs. Comparison of the flutemetamol-interacting residues in Aß40 with the small-molecule binding sites in other amyloid proteins suggest that conjugated aromatic compounds preferentially bind ß-sheet surface grooves lined by aromatic, polar, and charged residues. These motifs may explain the specificity of different PET tracers to different amyloid proteins.


Assuntos
Peptídeos beta-Amiloides
3.
J Am Chem Soc ; 144(15): 6839-6850, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35380805

RESUMO

The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of the E transmembrane (TM) domain, ETM, was recently determined using solid-state NMR spectroscopy. However, how the channel pore opens to mediate cation transport is unclear. Here, we use 13C and 19F solid-state NMR spectroscopy to investigate the conformation and dynamics of ETM at acidic pH and in the presence of calcium ions, which mimic the ERGIC and lysosomal environment experienced by the E protein in the cell. Acidic pH and calcium ions increased the conformational disorder of the N- and C-terminal residues and also increased the water accessibility of the protein, indicating that the pore lumen has become more spacious. ETM contains three regularly spaced phenylalanine (Phe) residues in the center of the peptide. 19F NMR spectra of para-fluorinated Phe20 and Phe26 indicate that both residues exhibit two sidechain conformations, which coexist within each channel. These two Phe conformations differ in their water accessibility, lipid contact, and dynamics. Channel opening by acidic pH and Ca2+ increases the population of the dynamic lipid-facing conformation. These results suggest an intricate aromatic network that regulates the opening of the ETM channel pore. This aromatic network may be a target for E inhibitors against SARS-CoV-2 and related coronaviruses.


Assuntos
COVID-19 , Cálcio , Cálcio/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Íons , Lipídeos , Conformação Proteica , SARS-CoV-2 , Água
4.
Proc Natl Acad Sci U S A ; 116(33): 16357-16366, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31358628

RESUMO

Misfolding of the microtubule-binding protein tau into filamentous aggregates is characteristic of many neurodegenerative diseases such as Alzheimer's disease and progressive supranuclear palsy. Determining the structures and dynamics of these tau fibrils is important for designing inhibitors against tau aggregation. Tau fibrils obtained from patient brains have been found by cryo-electron microscopy to adopt disease-specific molecular conformations. However, in vitro heparin-fibrillized 2N4R tau, which contains all four microtubule-binding repeats (4R), was recently found to adopt polymorphic structures. Here we use solid-state NMR spectroscopy to investigate the global fold and dynamics of heparin-fibrillized 0N4R tau. A single set of 13C and 15N chemical shifts was observed for residues in the four repeats, indicating a single ß-sheet conformation for the fibril core. This rigid core spans the R2 and R3 repeats and adopts a hairpin-like fold that has similarities to but also clear differences from any of the polymorphic 2N4R folds. Obtaining a homogeneous fibril sample required careful purification of the protein and removal of any proteolytic fragments. A variety of experiments and polarization transfer from water and mobile side chains indicate that 0N4R tau fibrils exhibit heterogeneous dynamics: Outside the rigid R2-R3 core, the R1 and R4 repeats are semirigid even though they exhibit ß-strand character and the proline-rich domains undergo large-amplitude anisotropic motions, whereas the two termini are nearly isotropically flexible. These results have significant implications for the structure and dynamics of 4R tau fibrils in vivo.


Assuntos
Doença de Alzheimer/genética , Citoesqueleto/ultraestrutura , Proteínas Associadas aos Microtúbulos/química , Proteínas tau/química , Doença de Alzheimer/patologia , Sequência de Aminoácidos/genética , Microscopia Crioeletrônica , Citoesqueleto/química , Citoesqueleto/patologia , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/química , Microtúbulos/genética , Ressonância Magnética Nuclear Biomolecular , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Ligação Proteica/genética , Conformação Proteica em Folha beta/genética , Domínios Proteicos/genética , Estrutura Secundária de Proteína , Proteínas tau/genética , Proteínas tau/ultraestrutura
5.
J Am Chem Soc ; 143(20): 7839-7851, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33983722

RESUMO

Many neurodegenerative diseases such as Alzheimer's disease are characterized by pathological ß-sheet filaments of the tau protein, which spread in a prion-like manner in patient brains. To date, high-resolution structures of tau filaments obtained from patient brains show that the ß-sheet core only includes portions of the microtubule-binding repeat domains and excludes the C-terminal residues, indicating that the C-terminus is dynamically disordered. Here, we use solid-state NMR spectroscopy to identify the ß-sheet core of full-length 0N3R tau fibrillized using heparin. Assignment of 13C and 15N chemical shifts of the rigid core of the protein revealed a single predominant ß-sheet conformation, which spans not only the R3, R4, R' repeats but also the entire C-terminal domain (CT) of the protein. This massive ß-sheet core qualitatively differs from all other tau fibril structures known to date. Using long-range correlation NMR experiments, we found that the R3 and R4 repeats form a ß-arch, similar to that seen in some of the brain-derived tau fibrils, but the R1 and R3 domains additionally stack against the CT, reminiscent of previously reported transient interactions of the CT with the microtubule-binding repeats. This expanded ß-sheet core structure suggests that the CT may have a protective effect against the formation of pathological tau fibrils by shielding the amyloidogenic R3 and R4 domains, preventing side-on nucleation. Truncation and post-translational modification of the CT in vivo may thus play an important role in the progression of tauopathies.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas tau/química , Humanos , Conformação Proteica em Folha beta
6.
bioRxiv ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38826249

RESUMO

The adult mammalian heart has limited regenerative capacity following injury, leading to progressive heart failure and mortality. Recent studies have identified the spiny mouse ( Acomys ) as a unique model for mammalian cardiac isch3emic resilience, exhibiting enhanced recovery after myocardial infarction (MI) compared to commonly used laboratory mouse strains. However, the underlying cellular and molecular mechanisms behind this unique response remain poorly understood. In this study, we comprehensively characterized the metabolic characteristics of cardiomyocytes in Acomys compared to the non-regenerative Mus musculus . We utilized single-nucleus RNA sequencing (snRNA-seq) in sham-operated animals and 1, 3, and 7 days post-myocardial infarction to investigate cardiomyocytes' transcriptomic and metabolomic profiles in response to myocardial infarction. Complementary targeted metabolomics, stable isotope-resolved metabolomics, and functional mitochondrial assays were performed on heart tissues from both species to validate the transcriptomic findings and elucidate the metabolic adaptations in cardiomyocytes following ischemic injury. Transcriptomic analysis revealed that Acomys cardiomyocytes inherently upregulate genes associated with glycolysis, the pentose phosphate pathway, and glutathione metabolism while downregulating genes involved in oxidative phosphorylation (OXPHOS). These metabolic characteristics are linked to decreased reactive oxygen species (ROS) production and increased antioxidant capacity. Our targeted metabolomic studies in heart tissue corroborated these findings, showing a shift from fatty acid oxidation to glycolysis and ancillary biosynthetic pathways in Acomys at baseline with adaptive changes post-MI. Functional mitochondrial studies indicated a higher reliance on glycolysis in Acomys compared to Mus , underscoring the unique metabolic phenotype of Acomys hearts. Stable isotope tracing experiments confirmed a shift in glucose utilization from oxidative phosphorylation in Acomys . In conclusion, our study identifies unique metabolic characteristics of Acomys cardiomyocytes that contribute to their enhanced ischemic resilience following myocardial infarction. These findings provide novel insights into the role of metabolism in regulating cardiac repair in adult mammals. Our work highlights the importance of inherent and adaptive metabolic flexibility in determining cardiomyocyte ischemic responses and establishes Acomys as a valuable model for studying cardiac ischemic resilience in adult mammals.

7.
J Mol Biol ; 435(5): 167966, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682677

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope (E) protein forms a pentameric ion channel in the lipid membrane of the endoplasmic reticulum Golgi intermediate compartment (ERGIC) of the infected cell. The cytoplasmic domain of E interacts with host proteins to cause virus pathogenicity and may also mediate virus assembly and budding. To understand the structural basis of these functions, here we investigate the conformation and dynamics of an E protein construct (residues 8-65) that encompasses the transmembrane domain and the majority of the cytoplasmic domain using solid-state NMR. 13C and 15N chemical shifts indicate that the cytoplasmic domain adopts a ß-sheet-rich conformation that contains three ß-strands separated by turns. The five subunits associate into an umbrella-shaped bundle that is attached to the transmembrane helices by a disordered loop. Water-edited NMR spectra indicate that the third ß-strand at the C terminus of the protein is well hydrated, indicating that it is at the surface of the ß-bundle. The structure of the cytoplasmic domain cannot be uniquely determined from the inter-residue correlations obtained here due to ambiguities in distinguishing intermolecular and intramolecular contacts for a compact pentameric assembly of this small domain. Instead, we present four structural topologies that are consistent with the measured inter-residue contacts. These data indicate that the cytoplasmic domain of the SARS-CoV-2 E protein has a strong propensity to adopt ß-sheet conformations when the protein is present at high concentrations in lipid bilayers. The equilibrium between the ß-strand conformation and the previously reported α-helical conformation may underlie the multiple functions of E in the host cell and in the virion.


Assuntos
SARS-CoV-2 , Humanos , Bicamadas Lipídicas/química , Modelos Moleculares , Conformação Proteica em Folha beta , SARS-CoV-2/química
8.
J Exp Zool A Ecol Integr Physiol ; 337(1): 70-74, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33900057

RESUMO

The emergence of the field of transgenerational epigenetics inheritance (TEI) has profoundly reshaped our understanding of the relationships between environment, soma, and germ cells as well as of heredity. TEI refers to the changes in chromatin state, gene expression, and/or phenotypes that are transmitted across several generations without involving changes to the DNA sequences. TEI has direct connections with, and feeds from, the fields of molecular biology, genetics, developmental biology, and reproductive biology, among others. However, the expansion of TEI-related research, has profoundly reshaped boundaries within each field and often led to the erosion of theories and concepts considered as tenets of biology. We first explore how the molecularization of biology has shifted the definition of epigenetics to include the notion of heredity and how epigenetics has refined our understanding of the central dogma of biology. The demonstrated transfer of environmental information from soma to germ cell through extracellular vesicles and subsequent alteration of health outcomes in offspring has put a definite end to the long-held principle of the Weismann barrier. TEI has also simultaneously led to the revival of the inheritance of acquired characteristics while further eroding the concept of an epigenetic "blank slate" in mammals. Using an historical framework, and via the exploration of central studies in the field, in this perspective article, we will draw a compelling argument for the revolutionary aspect of TEI in biology.


Assuntos
Epigênese Genética , Hereditariedade , Animais , Células Germinativas , Padrões de Herança , Fenótipo
9.
Sci Adv ; 8(29): eabo4459, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35857846

RESUMO

The protein tau associates with microtubules to maintain neuronal health. Posttranslational modifications of tau interfere with this binding, leading to tau aggregation in neurodegenerative disorders. Here, we use solid-state nuclear magnetic resonance (NMR) to investigate the structure of the microtubule-binding domain of tau. Wild-type tau that contains four microtubule-binding repeats and a pseudorepeat R' is studied. Complexed with taxol-stabilized microtubules, the immobilized residues exhibit well-resolved two-dimensional spectra that can be assigned to the amino-terminal region of R4 and the R' domain. When tau coassembles with tubulin to form unstable microtubules, the R' signals remain, whereas the R4 signals disappear, indicating that R' remains immobilized, whereas R4 becomes more mobile. Therefore, R' outcompetes the other four repeats to associate with microtubules. These NMR data, together with previous cryo-electron microscopy densities, indicate an extended conformation for microtubule-bound R'. R' contains the largest number of charged residues among all repeats, suggesting that charge-charge interaction drives tau-microtubule association.


Assuntos
Microtúbulos , Proteínas tau , Sequência de Aminoácidos , Microscopia Crioeletrônica , Microtúbulos/metabolismo , Ligação Proteica , Tubulina (Proteína)/química , Proteínas tau/metabolismo
10.
J Sch Nurs ; 27(3): 219-24, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21562098

RESUMO

The purpose of this study was to estimate the risk of acquiring pathogenic bacteria as a result of shaking hands at graduation ceremonies. School officials participating in graduation ceremonies at elementary, secondary, and postsecondary schools were recruited. Specimens were collected before and immediately following graduation. Cultures identified any pathogenic bacteria in each specimen. Subjects shook a total of 5,209 hands. Staphylococcus aureus was separately detected on one pregraduation right hand, one postgraduation right hand, and one postgraduation left hand. Nonpathogenic bacteria were collected in 93% of specimens. Pregraduation and postgraduation specimens were of different strains. We measured a risk of one new bacterial acquisition in a sample exposed to 5,209 handshakes yielding an overall estimate of 0.019 pathogens acquired per handshake. We conclude that a single handshake at a graduation offers only a small risk of bacterial pathogen acquisition.


Assuntos
Infecções Comunitárias Adquiridas/transmissão , Aglomeração , Surtos de Doenças/prevenção & controle , Docentes/estatística & dados numéricos , Mãos/microbiologia , Adolescente , Criança , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/microbiologia , Feminino , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/isolamento & purificação , Desinfecção das Mãos , Humanos , Higiene , Masculino , Instituições Acadêmicas/organização & administração , Estados Unidos/epidemiologia
11.
Clin Imaging ; 40(4): 591-3, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27317202

RESUMO

A 38year-old male presented with cauda equina syndrome following multiple lumbar puncture attempts. Lumbar spine magnetic resonance imaging (MRI) showed a subdural hematoma and an area of apparent contrast enhancement in the spinal canal on sagittal post-contrast images. Axial post-contrast images obtained seven minutes later demonstrated an increase in size and change in shape of the region of apparent contrast enhancement, indicating active extravasation of the contrast agent. This is the first reported case of active extravasation of gadolinium-based contrast agent in the spine.


Assuntos
Meios de Contraste/efeitos adversos , Extravasamento de Materiais Terapêuticos e Diagnósticos/diagnóstico por imagem , Gadolínio/administração & dosagem , Hematoma Subdural/etiologia , Punção Espinal/efeitos adversos , Espaço Subdural , Adulto , Cauda Equina/diagnóstico por imagem , Hematoma Subdural/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Espaço Subdural/diagnóstico por imagem
12.
Neuron ; 92(4): 780-795, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27773581

RESUMO

HnRNPA2B1 encodes an RNA binding protein associated with neurodegeneration. However, its function in the nervous system is unclear. Transcriptome-wide crosslinking and immunoprecipitation in mouse spinal cord discover UAGG motifs enriched within ∼2,500 hnRNP A2/B1 binding sites and an unexpected role for hnRNP A2/B1 in alternative polyadenylation. HnRNP A2/B1 loss results in alternative splicing (AS), including skipping of an exon in amyotrophic lateral sclerosis (ALS)-associated D-amino acid oxidase (DAO) that reduces D-serine metabolism. ALS-associated hnRNP A2/B1 D290V mutant patient fibroblasts and motor neurons differentiated from induced pluripotent stem cells (iPSC-MNs) demonstrate abnormal splicing changes, likely due to increased nuclear-insoluble hnRNP A2/B1. Mutant iPSC-MNs display decreased survival in long-term culture and exhibit hnRNP A2/B1 localization to cytoplasmic granules as well as exacerbated changes in gene expression and splicing upon cellular stress. Our findings provide a cellular resource and reveal RNA networks relevant to neurodegeneration, regulated by normal and mutant hnRNP A2/B1. VIDEO ABSTRACT.


Assuntos
Processamento Alternativo/genética , Esclerose Lateral Amiotrófica/genética , Sobrevivência Celular/genética , Fibroblastos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Neurônios Motores/metabolismo , Transporte Proteico/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Estudos de Casos e Controles , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Imunofluorescência , Expressão Gênica , Perfilação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos , Mutação , Poliadenilação
13.
J Neurotrauma ; 31(17): 1497-506, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24735414

RESUMO

Research shows that approximately 14% of school age children with mild traumatic brain injury (TBI) including sports-related concussions (SRCs) remain symptomatic three months after injury. Advanced imaging studies early after injury have shown evidence of axonal damage, reduced N-acetyl aspartate (NAA) and impaired cerebral blood flow (CBF) in individuals with mild TBI. This study was undertaken to determine whether these techniques can provide valuable information in pediatric SRC patients with persistent post-concussive symptoms. Fifteen pediatric subjects ages 8 to 17 years with persistent post-concussive symptoms were evaluated using perfusion-weighted imaging (PWI), three-dimensional (3D) magnetic resonance spectroscopic imaging, and diffusion tensor imaging (DTI) three to 12 months post-SRC. Data were compared with 15 demographically similar (age, gender, and body mass index) controls. In the bilateral thalami, SRC patients showed reduced CBF (p=0.02 and p=0.02) and relative cerebral blood volume (CBV; p=0.05 and p=0.03), compared with controls. NAA/creatine (Cr) and NAA/choline (Cho) ratios were reduced in the corpus callosum (p=0.003; p=0.05) and parietal white matter (p<0.001; p=0.006) of SRC subjects, compared with controls. Significant differences in DTI metrics differentiated patients with cognitive symptoms, compared with those without cognitive symptoms and controls. Advanced imaging methods detect a spectrum of injury including impaired axonal function, neuronal metabolism and perfusion, suggesting involvement of the neurovascular unit in the presence of persistent symptoms in pediatric SRC patients.


Assuntos
Concussão Encefálica/patologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Síndrome Pós-Concussão/patologia , Adolescente , Concussão Encefálica/complicações , Circulação Cerebrovascular , Criança , Imagem de Tensor de Difusão , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Imagem Multimodal , Neurônios/patologia , Projetos Piloto
14.
Am J Chin Med ; 37(2): 215-26, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19507267

RESUMO

Patients receiving regular hemodialysis sessions have been known to suffer from fatigue and depression. This experiment was designed to determine the effects of far infrared ray (FIR) stimulation on acupoints of patients suffering from renal failure who are receiving regular hemodialysis. Patients receiving long-term and regular hemodialysis who volunteered for this procedure were randomly selected to undergo either FIR or heat pad (HP) therapy to determine the impact of FIR treatment on these patients. Both the activities of the autonomic nervous system and changes in quality of life were measured before and after treatment to determine the effectiveness of the FIR treatment. Results from this study show that FIR therapy decreases both stress and fatigue levels of these patients. It also stimulates autonomic nervous system (ANS) activity in patients who are diagnosed with end-stage renal disease (ESRD) and are receiving regular hemodialysis (HD). Therefore, benefits of FIR stimulation on these patients are clearly demonstrated in this preliminary study.


Assuntos
Acupuntura , Raios Infravermelhos , Falência Renal Crônica/terapia , Qualidade de Vida , Diálise Renal , Adulto , Feminino , Humanos , Hipertermia Induzida , Falência Renal Crônica/fisiopatologia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA