Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 243(5): 1681-1697, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39014537

RESUMO

Vascular bundles transport water and photosynthate to all organs, and increased bundle number contributes to crop lodging resistance. However, the regulation of vascular bundle formation is poorly understood in the Arabidopsis stem. We report a novel semi-dominant mutant with high vascular activity, hva-d, showing increased vascular bundle number and enhanced cambium proliferation in the stem. The activation of a C2H2 zinc finger transcription factor, AT5G27880/HVA, is responsible for the hva-d phenotype. Genetic, biochemical, and fluorescent microscopic analyses were used to dissect the functions of HVA. HVA functions as a repressor and interacts with TOPLESS via the conserved Ethylene-responsive element binding factor-associated Amphiphilic Repression motif. In contrast to the HVA activation line, knockout of HVA function with a CRISPR-Cas9 approach or expression of HVA fused with an activation domain VP16 (HVA-VP16) resulted in fewer vascular bundles. Further, HVA directly regulates the expression of the auxin transport efflux facilitator PIN1, as a result affecting auxin accumulation. Genetics analysis demonstrated that PIN1 is epistatic to HVA in controlling bundle number. This research identifies HVA as a positive regulator of vascular initiation through negatively modulating auxin transport and sheds new light on the mechanism of bundle formation in the stem.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Caules de Planta , Feixe Vascular de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Transporte Biológico , Feixe Vascular de Plantas/metabolismo , Caules de Planta/metabolismo , Mutação/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fenótipo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica , Câmbio/metabolismo , Câmbio/genética , Epistasia Genética
2.
BMC Plant Biol ; 22(1): 143, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337270

RESUMO

Aronia is a group of deciduous fruiting shrubs, of the Rosaceae family, native to eastern North America. Interest in Aronia has increased because of the high levels of dietary antioxidants in Aronia fruits. Using Illumina RNA-seq transcriptome analysis, this study investigates the molecular mechanisms of polyphenol biosynthesis during Aronia fruit development. Six A. melanocarpa (diploid) accessions were collected at four fruit developmental stages. De novo assembly was performed with 341 million clean reads from 24 samples and assembled into 90,008 transcripts with an average length of 801 bp. The transcriptome had 96.1% complete according to Benchmarking Universal Single-Copy Orthologs (BUSCOs). The differentially expressed genes (DEGs) were identified in flavonoid biosynthetic and metabolic processes, pigment biosynthesis, carbohydrate metabolic processes, and polysaccharide metabolic processes based on significant Gene Ontology (GO) biological terms. The expression of ten anthocyanin biosynthetic genes showed significant up-regulation during fruit development according to the transcriptomic data, which was further confirmed using qRT-PCR expression analyses. Additionally, transcription factor genes were identified among the DEGs. Using a transient expression assay, we confirmed that AmMYB10 induces anthocyanin biosynthesis. The de novo transcriptome data provides a valuable resource for the understanding the molecular mechanisms of fruit anthocyanin biosynthesis in Aronia and species of the Rosaceae family.


Assuntos
Photinia , Transcriptoma , Antocianinas/metabolismo , Frutas , Regulação da Expressão Gênica de Plantas , Photinia/genética , Photinia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Anal Bioanal Chem ; 414(6): 2275-2284, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34982180

RESUMO

By means of glass bottle sampling followed by solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC-MS) technique, the change characteristics of volatile organic compounds (VOCs) in breaths, between before gargling and after gargling, were investigated, respectively, in 41 healthy subjects and 50 esophageal cancer patients. Using an untargeted strategy, 143 VOC chromatographic peaks were enrolled in the statistical analysis. Based on the orthogonal partial least squares discriminant analysis (OPLS-DA), the VOC variations after gargling for each breath test group were obtained according to the combined criteria of variable importance in projection (VIP > 1.5), Wilcoxon signed-rank test (P < 0.05), and fold change (FC > 2.0). When gargled, the levels of indole, phenol, 1-propanol, and p-cresol in the breath of healthy people decreased; meanwhile, for esophageal cancer patients, the declined VOCs in breath were indole, phenol, dimethyl disulfide, and p-cresol. Particularly, these substances were previously reported as breath biomarkers in some diseases such as esophageal, gastric, thyroid, breast, oral, and lung cancers, as well as certain non-cancer disorders. The present work indicates that expiratory VOCs involve the prominent oral cavity source, and in the breath biomarkers study, the potential impact that originates from oral volatiles should be considered. In view of the present results, it is also proposed that gargle pretreatment could eliminate possible interference from the oral cavity VOCs that might benefit breath biomarker investigation. Gargle pretreatment helps to distinguish oral-source VOCs and control their potential impact on breath biomarkers.


Assuntos
Compostos Orgânicos Voláteis , Biomarcadores/análise , Testes Respiratórios/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise
4.
New Phytol ; 226(1): 59-74, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31660587

RESUMO

Vascular stem cell maintenance is regulated by a peptide signaling involving Tracheary Element Differentiation Inhibitory Factor (TDIF) and Receptor TDR/PXY (Phloem intercalated with Xylem) and co-receptor BAK1 (BRI1-associated receptor kinase1). The regulatory mechanism of this signaling pathway is largely unknown despite its importance in stem cell maintenance in the vascular meristem. We report that activation of a NAC domain transcription factor XVP leads to precocious Xylem differentiation, disruption of Vascular Patterning, and reduced cell numbers in vascular bundles. We combined molecular and genetic studies to elucidate the biological functions of XVP. XVP is expressed in the cambium, localized on the plasma membrane and forms a complex with TDIF co-receptors PXY-BAK1. Simultaneous mutation of XVP and its close homologous NAC048 enhances TDIF signaling. In addition, genetics analysis indicated that XVP promotes xylem differentiation through a known master regulator VASCULAR-RELATED NAC-DOMAIN6 (VND6). Expression analyses indicate that XVP activates CLAVATA3/ESR (CLE)-related protein 44 (CLE44), the coding gene of TDIF, whereas TDIF represses XVP expression, suggesting a feedback mechanism. Therefore, XVP functions as a negative regulator of the TDIF-PXY module and fine-tunes TDIF signaling in vascular development. These results shed new light on the mechanism of vascular stem cell maintenance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/metabolismo , Fatores de Transcrição/genética , Xilema/metabolismo
5.
Plant Physiol ; 181(2): 595-608, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31377726

RESUMO

NAM, ATAF1/2 and CUC2 (NAC) domain transcription factors function as master switches in regulating secondary cell wall (SCW) biosynthesis in Arabidopsis (Arabidopsis thaliana) stems. Despite the importance of these NACs in fiber development, the upstream signal is still elusive. Using a large-scale mutant screening, we identified a dominant activation-tagging mutant, fiberless-d (fls-d), showing defective SCW development in stem fibers, similar to that of the nac secondary wall thickening promoting factor1-1 (nst1-1)nst3-3 double mutant. Overexpression of LATERAL ORGAN BOUNDARIES DOMAIN29 (LBD29) is responsible for the fls-d mutant phenotypes. By contrast, loss-of-function of LBD29, either in the dominant repression transgenic lines or in the transfer-DNA (T-DNA) insertion mutant lbd29-1, enhanced SCW development in fibers. Genetic analysis and transgenic studies demonstrated LBD29 depends on master regulators in mediating SCW biosynthesis, specifically NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1), NST2, and NST3. Increasing indole-3-acetic acid (IAA) levels, either in stem tissues above a N-1-naphthylphthalamic acid-treated region or in plants directly sprayed with IAA, inhibits fiber wall thickening. The inhibition effect of naphthylphthalamic acid treatment and exogenous IAA application depends on a known auxin signaling pathway involving AUXIN RESPONSE FACTOR7 (ARF7)/ARF19 and LBD29. These results demonstrate auxin is upstream of LBD29 in repressing NAC master regulators, and therefore shed new light on the regulation of SCW biosynthesis in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Parede Celular/fisiologia , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis , Fatores de Transcrição/fisiologia
6.
J Exp Bot ; 71(22): 7160-7170, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32926140

RESUMO

Ethylene is a gaseous hormone that affects many processes of plant growth and development. During vascular development, ethylene positively regulates cambial cell division in parallel with tracheary element differentiation inhibitory factor (TDIF) peptide signaling. In this study, we identified an ethylene overproducing mutant, acs7-d, exhibiting enhanced cambial activity and reduced wall development in fiber cells. Using genetic analysis, we found that ethylene signaling is necessary for the phenotypes of enhanced cambial cell division as well as defects in stem elongation and fiber cell wall development. Further, the cambial cell proliferation phenotype of acs7-d depends on WOX4, indicating that the two parallel pathways, ethylene and TDIF signaling, converge at WOX4 in regulating cambium activity. Gene expression analysis showed that ethylene impedes fiber cell wall biosynthesis through a conserved hierarchical transcriptional regulation. These results advance our understanding of the molecular mechanisms of ethylene in regulating vascular meristem activity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Câmbio/genética , Câmbio/metabolismo , Etilenos , Regulação da Expressão Gênica de Plantas , Liases , Meristema/genética , Meristema/metabolismo
7.
Plant Cell Physiol ; 60(1): 188-201, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30329113

RESUMO

The Aurora kinases are serine/threonine kinases with conserved functions in mitotic cell division in eukaryotes. In Arabidopsis, Aurora kinases play important roles in primary meristem maintenance, but their functions in vascular development are still elusive. We report a dominant xdi-d mutant showing the xylem development inhibition (XDI) phenotype. Gene identification and transgenic overexpression experiments indicated that the activation of the Arabidopsis Aurora 2 (AtAUR2) gene is responsible for the XDI phenotype. In contrast, the aur1-2 aur2-2 double mutant plants showed enhanced differentiation of phloem and xylem cells, indicating that the Aurora kinases negatively affect xylem differentiation. The transcript levels of key regulatory genes in vascular cell differentiation, i.e. ALTERED PHLOEM DEVELOPMENT (APL), VASCULAR-RELATED NAC-DOMAIN 6 (VND6) and VND7, were higher in the aur1-2 aur2-2 double mutant and lower in xdi-d mutants compared with the wild-type plants, further supporting the functions of α-Aurora kinases in vascular development. Gene mutagenesis and transgenic studies showed that protein phosphorylation and substrate binding, but not protein dimerization and ubiquitination, are critical for the biological function of AtAUR2. These results indicate that α-Aurora kinases play key roles in vascular cell differentiation in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Aurora Quinases/metabolismo , Feixe Vascular de Plantas/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genes Reguladores , Teste de Complementação Genética , Mutação/genética , Fenótipo , Floema/crescimento & desenvolvimento , Floema/metabolismo , Xilema/crescimento & desenvolvimento , Xilema/metabolismo , Xilema/ultraestrutura
8.
BMC Cancer ; 19(1): 841, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455253

RESUMO

BACKGROUND: Blood counting and the liver function tests, as the routine examinations, can reflect the immune and nutritional status of the body, our aim is to assess the prognostic significance of serum gamma-glutamyltransferase (GGT) levels and AST/ALT in primary hepatic carcinoma. METHODS: Clinico-pathological data of 414 patients with primary hepatic carcinoma in the 1st Affiliated Hospital of Anhui Medical College between January 2007 to January 2014 was analyzed retrospectively in this study. Survival curves were described by Kaplan-Meier method and compared by Log-rank test, univariate and multivariate analysis were used to identify the prognostic factors. RESULTS: GGT was positively correlated with the tumor size(P = 0.000), tumor volume (P = 0.000), tumor volume percent (P = 0.004), TNM stage(P = 0.009), 1-year survival rate (P = 0.000), 3- years survival rate (P = 0.000) and 5-years survival rate(P = 0.000). The serum ALT/AST was significantly correlated with age (P = 0.047), tumor size(P = 0.002), tumor volume (P = 0.010), tumor volume percent (P = 0.005), TNM stage(P = 0.006), liver cirrhosis(P = 0.003), 3- years survival rate (P = 0.032) and 5-years survival rate(P = 0.000). The Kaplan-Meier curves showed that the patients with primary hepatic carcinoma had a longer time in the low GGT group and low AST/ALT group, showing a significant difference (P < 0.05). The univariate and multivariate analyses showed that TNM stage, differentiation grade, tumor volume, GGT and AST/ALT were independent factors for predicting overall survival rate of primary hepatic carcinoma patients. CONCLUSIONS: GGT and AST/ALT were independent factors for predicting overall survival rate of primary hepatic carcinoma patients.


Assuntos
Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Carcinoma Hepatocelular/sangue , Neoplasias Hepáticas/sangue , gama-Glutamiltransferase/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/mortalidade , Feminino , Humanos , Estimativa de Kaplan-Meier , Testes de Função Hepática , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/mortalidade , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Curva ROC , Carga Tumoral
9.
Plant J ; 83(3): 388-400, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26043238

RESUMO

Secondary cell-wall thickening takes place in sclerenchyma cells, but not in surrounding parenchyma cells. The molecular mechanism of switching on and off secondary wall synthesis in various cell types is still elusive. Here, we report the identification of a dominant mutant stp-2d showing secondary wall thickening in pith cells (STP). Immunohistochemistry assays confirmed accumulation of secondary cell walls in the pith cells of the stp-2d mutant. Activation of microRNA 165b (miR165b) expression is responsible for the STP phenotype, as demonstrated by transgenic over-expression experiments. The expression of three class III HD-ZIP transcription factor genes, including AtHB15, was repressed in the stp-2d mutant. Transgenic over-expression of a mutant form of AtHB15 that is resistant to miR165-mediated cleavage reversed the stp-2d mutant phenotype to wild-type, indicating that AtHB15 represses secondary wall development in pith. Characterization of two athb15 mutant alleles further confirmed that functional AtHB15 is necessary for retaining primary walls in parenchyma pith cells. Expression analyses of cell-wall synthetic genes and wall-related transcription factors indicated that a transcriptional pathway is involved in AtHB15 function. These results provide insight into the molecular mechanism of secondary cell-wall development.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Parede Celular , Proteínas de Homeodomínio/biossíntese , MicroRNAs/metabolismo , Fatores de Transcrição/biossíntese , Arabidopsis/crescimento & desenvolvimento
10.
BMC Genomics ; 17: 23, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728635

RESUMO

BACKGROUND: Legumes are important to humans by providing food, feed and raw materials for industrial utilizations. Some legumes, such as alfalfa, are potential bioenergy crops due to their high biomass productivity. Global transcriptional profiling has been successfully used to identify genes and regulatory pathways in secondary cell wall thickening in Arabidopsis, but such transcriptome data is lacking in legumes. RESULTS: A systematic microarray assay and high through-put real time PCR analysis of secondary cell wall development were performed along stem maturation in Medicago truncatula. More than 11,000 genes were differentially expressed during stem maturation, and were categorized into 10 expression clusters. Among these, 279 transcription factor genes were correlated with lignin/cellulose biosynthesis, therefore representing putative regulators of secondary wall development. The b-ZIP, NAC, WRKY, C2H2 zinc finger (ZF), homeobox, and HSF gene families were over-represented. Gene co-expression network analysis was employed to identify transcription factors that may regulate the biosynthesis of lignin, cellulose and hemicellulose. As a complementary approach to microarray, real-time PCR analysis was used to characterize the expression of 1,045 transcription factors in the stem samples, and 64 of these were upregulated more than 5-fold during stem maturation. Reverse genetics characterization of a cellulose synthase gene in cluster 10 confirmed its function in xylem development. CONCLUSIONS: This study provides a useful transcriptome and expression resource for understanding cell wall development, which is pivotal to enhance biomass production in legumes.


Assuntos
Parede Celular/genética , Perfilação da Expressão Gênica , Glucosiltransferases/biossíntese , Medicago truncatula/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/genética , Glucosiltransferases/genética , Lignina/biossíntese , Lignina/genética , Medicago truncatula/crescimento & desenvolvimento , Caules de Planta/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
11.
Plant Biotechnol J ; 14(3): 895-904, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26190611

RESUMO

To generate a forage crop with increased biomass density that retains forage quality, we have genetically transformed lines of alfalfa (Medicago sativa L.) expressing antisense constructs targeting two different lignin pathway biosynthetic genes with a construct for down-regulation of a WRKY family transcription factor that acts as a repressor of secondary cell wall formation in pith tissues. Plants with low-level expression of the WRKY dominant repressor construct produced lignified cell walls in pith tissues and exhibited enhanced biomass and biomass density, with an increase in total sugars in the cell wall fraction; however, lines with high expression of the WRKY dominant repressor construct exhibited a very different phenotype, with loss of interfascicular fibres associated with repression of the NST1 transcription factor. This latter phenotype was not observed in transgenic lines in which the WRKY transcription factor was down-regulated by RNA interference. Enhanced and/or ectopic deposition of secondary cell walls was also seen in corn and switchgrass expressing WRKY dominant repressor constructs, with enhanced biomass in corn but reduced biomass in switchgrass. Neutral detergent fibre digestibility was not impacted by WRKY expression in corn. Cell walls from WRKY-DR-expressing alfalfa plants with enhanced secondary cell wall formation exhibited increased sugar release efficiency, and WRKY dominant repressor expression further increased sugar release in alfalfa down-regulated in the COMT, but not the HCT, genes of lignin biosynthesis. These results suggest that significant enhancements in forage biomass and quality can be achieved through engineering WRKY transcription factors in both monocots and dicots.


Assuntos
Biomassa , Lignina/metabolismo , Medicago sativa/fisiologia , Parede Celular/metabolismo , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Medicago sativa/genética , Panicum/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/citologia , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Zea mays/genética
13.
Nat Commun ; 15(1): 1472, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368437

RESUMO

Understanding how plants alter their development and architecture in response to ambient temperature is crucial for breeding resilient crops. Here, we identify the quantitative trait locus qMULTIPLE INFLORESCENCE BRANCH 2 (qMIB2), which modulates inflorescence branching in response to high ambient temperature in tomato (Solanum lycopersicum). The non-functional mib2 allele may have been selected in large-fruited varieties to ensure larger and more uniform fruits under varying temperatures. MIB2 gene encodes a homolog of the Arabidopsis thaliana transcription factor SPATULA; its expression is induced in meristems at high temperature. MIB2 directly binds to the promoter of its downstream gene CONSTANS-Like1 (SlCOL1) by recognizing the conserved G-box motif to activate SlCOL1 expression in reproductive meristems. Overexpressing SlCOL1 rescue the reduced inflorescence branching of mib2, suggesting how the MIB2-SlCOL1 module helps tomato inflorescences adapt to high temperature. Our findings reveal the molecular mechanism underlying inflorescence thermomorphogenesis and provide a target for breeding climate-resilient crops.


Assuntos
Arabidopsis , Solanum lycopersicum , Inflorescência , Solanum lycopersicum/genética , Vernalização , Melhoramento Vegetal , Meristema/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Proc Natl Acad Sci U S A ; 107(32): 14496-501, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660755

RESUMO

Lignin is a major component of plant secondary cell walls and is derived from p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) monolignols. Among higher plants, S lignin is generally considered to be restricted to angiosperms, which contain the S lignin-specific cytochrome P450-dependent monooxygenase, ferulic acid/coniferaldehyde/coniferyl alcohol 5-hydoxylase (F5H). The transcription factor MYB58 directly regulates expression of monolignol pathway genes except for F5H. Here we show that F5H expression is directly regulated by the secondary cell wall master switch NST1/SND1, which is known to regulate expression of MYB58. Deletion of NST1 expression in Medicago truncatula leads to a loss of S lignin associated with a more than 25-fold reduction of F5H expression but only around a 2-fold reduction in expression of other lignin pathway genes. A detailed phylogenetic analysis showed that gymnosperms lack both F5H and orthologs of NST1/SND1. We propose that both F5H and NST1 appeared at a similar time after the divergence of angiosperms and gymnosperms, with F5H possibly originating as a component of a defense mechanism that was recruited to cell wall biosynthesis through the evolution of NST1-binding elements in its promoter.


Assuntos
Regulação da Expressão Gênica de Plantas , Lignina/biossíntese , Medicago/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Arabidopsis , Parede Celular/metabolismo , Medicago/genética , Filogenia , Fatores de Transcrição
15.
Proc Natl Acad Sci U S A ; 107(51): 22338-43, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21135241

RESUMO

Stems of dicotyledonous plants consist of an outer epidermis, a cortex, a ring of secondarily thickened vascular bundles and interfascicular cells, and inner pith parenchyma cells with thin primary walls. It is unclear how the different cell layers attain and retain their identities. Here, we show that WRKY transcription factors are in part responsible for the parenchymatous nature of the pith cells in dicotyledonous plants. We isolated mutants of Medicago truncatula and Arabidopsis thaliana with secondary cell wall thickening in pith cells associated with ectopic deposition of lignin, xylan, and cellulose, leading to an ∼50% increase in biomass density in stem tissue of the Arabidopsis mutants. The mutations are caused by disruption of stem-expressed WRKY transcription factor (TF) genes, which consequently up-regulate downstream genes encoding the NAM, ATAF1/2, and CUC2 (NAC) and CCCH type (C3H) zinc finger TFs that activate secondary wall synthesis. Direct binding of WRKY to the NAC gene promoter and repression of three downstream TFs were confirmed by in vitro assays and in planta transgenic experiments. Secondary wall-bearing cells form lignocellulosic biomass that is the source for second generation biofuel production. The discovery of negative regulators of secondary wall formation in pith opens up the possibility of significantly increasing the mass of fermentable cell wall components in bioenergy crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Parede Celular/metabolismo , Medicago truncatula/crescimento & desenvolvimento , Mutação , Caules de Planta/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Parede Celular/genética , Lignina/biossíntese , Lignina/genética , Medicago truncatula/genética , Dados de Sequência Molecular , Caules de Planta/genética , Fatores de Transcrição/genética
16.
Plant J ; 68(6): 1104-14, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21883551

RESUMO

NAC domain transcription factors act as master switches for secondary cell wall thickening, but how they exert their function and how their expression is regulated remains unclear. Here we identify a loss-of-function point mutation in the NST1 gene of Medicago truncatula. The nst1-3 mutant shows no lignification in interfascicular fibers, as previously seen in tnt1 transposon insertion alleles. However, the C→A transversion, which causes a T94K mutation in the NST1 protein, leads to increased NST1 expression. Introduction of the same mutation into the Arabidopsis homolog SND1 causes both protein mislocalization and loss of target DNA binding, with a resultant inability to trans-activate downstream secondary wall synthesis genes. Furthermore, trans-activation assays show that the expression of SND1 operates under positive feedback control from itself, and SND1 was shown to bind directly to a conserved motif in its own promoter, located within a recently described 19-bp secondary wall NAC binding element. Three MYB transcription factors downstream of SND1, one of which is directly regulated by SND1, exert negative regulation on SND1 promoter activity. Our results identify a conserved amino acid critical for NST1/SND1 function, and show that the expression of the NAC master switch itself is under both positive (autoregulatory) and negative control.


Assuntos
Arabidopsis/genética , Parede Celular/metabolismo , Genes de Plantas , Medicago truncatula/genética , Proteínas de Plantas/genética , Mutação Puntual , Ativação Transcricional/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição
17.
New Phytol ; 193(1): 121-136, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21988539

RESUMO

• The major obstacle for bioenergy production from switchgrass biomass is the low saccharification efficiency caused by cell wall recalcitrance. Saccharification efficiency is negatively correlated with both lignin content and cell wall ester-linked p-coumarate: ferulate (p-CA : FA) ratio. In this study, we cloned and functionally characterized an R2R3-MYB transcription factor from switchgrass and evaluated its potential for developing lignocellulosic feedstocks. • The switchgrass PvMYB4 cDNAs were cloned and expressed in Escherichia coli, yeast, tobacco and switchgrass for functional characterization. Analyses included determination of phylogenetic relations, in situ hybridization, electrophoretic mobility shift assays to determine binding sites in target promoters, and protoplast transactivation assays to demonstrate domains active on target promoters. • PvMYB4 binds to the AC-I, AC-II and AC-III elements of monolignol pathway genes and down-regulates these genes in vivo. Ectopic overexpression of PvMYB4 in transgenic switchgrass resulted in reduced lignin content and ester-linked p-CA : FA ratio, reduced plant stature, increased tillering and an approx. threefold increase in sugar release efficiency from cell wall residues. • We describe an alternative strategy for reducing recalcitrance in switchgrass by manipulating the expression of a key transcription factor instead of a lignin biosynthetic gene. PvMYB4-OX transgenic switchgrass lines can be used as potential germplasm for improvement of lignocellulosic feedstocks and provide a platform for further understanding gene regulatory networks underlying switchgrass cell wall recalcitrance.


Assuntos
Lignina/metabolismo , Panicum/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas/genética , Parede Celular/metabolismo , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Dados de Sequência Molecular , Panicum/genética , Fenóis/metabolismo , Fenilpropionatos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Feixe Vascular de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Nicotiana/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
18.
Front Cell Infect Microbiol ; 12: 943859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204638

RESUMO

Cancer patients are at high risk of infections and infection-related mortality; thereby, prompt diagnosis and precise anti-infectives treatment are critical. This study aimed to evaluate the performance of nanopore amplicon sequencing in identifying microbial agents among immunocompromised cancer patients with suspected infections. This prospective study enlisted 56 immunocompromised cancer patients with suspected infections. Their body fluid samples such as sputum and blood were collected, and potential microbial agents were detected in parallel by nanopore amplicon sequencing and the conventional culture method. Among the 56 body fluid samples, 47 (83.9%) samples were identified to have at least one pathogen by nanopore amplicon sequencing, but only 25 (44.6%) samples exhibited a positive finding by culture. Among 31 culture-negative samples, nanopore amplicon sequencing successfully detected pathogens in 22 samples (71.0%). Nanopore amplicon sequencing showed a higher sensitivity in pathogen detection than that of the conventional culture method (83.9% vs. 44.6%, P<0.001), and this advantage both existed in blood samples (38.5% vs. 0%, P=0.039) and non-blood samples (97.7% vs. 58.1%, P<0.001). Compared with the culture method, nanopore amplicon sequencing illustrated more samples with bacterial infections (P<0.001), infections from fastidious pathogens (P=0.006), and co-infections (P<0.001). The mean turnaround time for nanopore amplicon sequencing was about 17.5 hours, which was shorter than that of the conventional culture assay. This study suggested nanopore amplicon sequencing as a rapid and precise method for detecting pathogens among immunocompromised cancer patients with suspected infections. The novel and high-sensitive method will improve the outcomes of immunocompromised cancer patients by facilitating the prompt diagnosis of infections and precise anti-infectives treatment.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Neoplasias , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Metagenômica/métodos , Neoplasias/complicações , Estudos Prospectivos
19.
Plant J ; 63(1): 100-14, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20408998

RESUMO

To identify genes controlling secondary cell wall biosynthesis in the model legume Medicago truncatula, we screened a Tnt1 retrotransposon insertion mutant population for plants with altered patterns of lignin autofluorescence. From more than 9000 R1 plants screened, four independent lines were identified with a total lack of lignin in the interfascicular region. The mutants also showed loss of lignin in phloem fibers, reduced lignin in vascular elements, failure in anther dehiscence and absence of phenolic autofluorescence in stomatal guard cell walls. Microarray and PCR analyses confirmed that the mutations were caused by the insertion of Tnt1 in a gene annotated as encoding a NAM (no apical meristem)-like protein (here designated Medicago truncatula NAC SECONDARY WALL THICKENING PROMOTING FACTOR 1, MtNST1). MtNST1 is the only family member in Medicago, but has three homologs (AtNST1-AtNST3) in Arabidopsis thaliana, which function in different combinations to control cell wall composition in stems and anthers. Loss of MtNST1 function resulted in reduced lignin content, associated with reduced expression of most lignin biosynthetic genes, and a smaller reduction in cell wall polysaccharide content, associated with reduced expression of putative cellulose and hemicellulose biosynthetic genes. Acid pre-treatment and cellulase digestion released significantly more sugars from cell walls of nst1 mutants compared with the wild type. We discuss the implications of these findings for the development of alfalfa (Medicago sativa) as a dedicated bioenergy crop.


Assuntos
Parede Celular/metabolismo , Lignina/biossíntese , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Análise de Sequência com Séries de Oligonucleotídeos , Fenóis/análise , Proteínas de Plantas/genética , Estômatos de Plantas/metabolismo , Retroelementos , Alinhamento de Sequência , Fatores de Transcrição/genética
20.
Front Plant Sci ; 12: 719606, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539713

RESUMO

Plant small peptides, including CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) and Epidermal Patterning Factor-Like (EPFL) peptides, play pivotal roles in coordinating developmental processes through cell-cell communication. Recent studies have revealed that the phloem-derived CLE peptides, CLE41/44 and CLE42, promote (pro-)cambial cell proliferation and inhibit xylem cell differentiation. The endodermis-derived EPFL peptides, EPFL4 and EPFL6, modulate vascular development in the stem. Further, several other peptide ligands CLE9, CLE10, and CLE45 play crucial roles in regulating vascular development in the root. The peptide signaling pathways interact with each other and crosstalk with plant hormone signals. In this mini-review, we summtarize the recent advances on peptides function in vascular development and discuss future perspectives for the research of the CLE and EPFL peptides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA