Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140175

RESUMO

A light-sensitive moiety, e.g., azobenzene, for the light-sensitive liposomal drug carrier has shown advantages as an advanced drug delivery system in site-specific smart therapy due to its reversible photoisomerization characteristics. In this work, a series of 4-position-cholesterol-functionalized azobenzene derivatives with 4'-position substituted pyridine, quinoline, isoquinoline, triethylamine, or ethylenediamine were synthesized, and the relationship between the molecular structure and drug release behaviors was clarified. We found that the charge and electrophilicity of substituents were two important factors (expressed as the characteristic time) that can precisely regulate the isomerization ratio in the liposomal system. There was an approximately linear correlation between the characteristic time of photoisomerization and the fitted first-order constant of photoinduced drug release rate. The photoinduced drug release could be achieved at the desired time and in an appropriate amount by tailoring the substituents at the 4'-position of azobenzene-cholesterol derivatives.

2.
Molecules ; 28(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050025

RESUMO

In this work, TiO2-MXene/poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) composite was utilized as an electrode material for the sensitive electrochemical detection of baicalein. The in-situ growth of TiO2 nanoparticles on the surface of MXene nanosheets can effectively prevent their aggregation, thus presenting a significantly large specific surface area and abundant active sites. However, the partial oxidation of MXene after calcination could reduce its conductivity. To address this issue, herein, PEDOT:PSS films were introduced to disperse the TiO2-MXene materials. The uniform and dense films of PEDOT:PSS not only improved the conductivity and dispersion of TiO2-MXene but also enhanced its stability and electrocatalytic activity. With the advantages of a composite material, TiO2-MXene/PEDOT:PSS as an electrode material demonstrated excellent electrochemical sensing ability for baicalein determination, with a wide linear response ranging from 0.007 to 10.0 µM and a lower limit of detection of 2.33 nM. Furthermore, the prepared sensor displayed good repeatability, reproducibility, stability and selectivity, and presented satisfactory results for the determination of baicalein in human urine sample analysis.


Assuntos
Flavanonas , Humanos , Reprodutibilidade dos Testes , Flavanonas/urina
3.
Biochem Biophys Res Commun ; 534: 99-106, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33316546

RESUMO

Interstitial pneumonia with autoimmune features (IPAF) is an unexplained disease state characterized by autoimmunity and pulmonary fibrosis. Exploring the pathogenesis of IPAF is helpful for the treatment of interstitial pneumonia and idiopathic pulmonary fibrosis. In this study, we observed that the lung Galectin-9 (Gal-9) of IPAF patients was significantly reduced, which was significantly related to lung dysfunction and abnormal humoral immunity. Moreover, an overreactive germinal center (GC) reaction in the lung lymph nodes (LNs) of Gal-9-deficient mice was found to be related to abnormally active follicular helper T cells (Tfh) cells. The lack of Gal-9 ligand in Tfh cells can lead to excessive transcriptional programming and differentiation and help GC B cells. Gal-9 deficiency caused an abnormal humoral immune response in mice, leading to excessive deposition of nonspecific autoantibodies in mice and chronic lung fibrosis. Our research reveals the important regulatory role of gal-9 in Tfh cells and a possible target for the treatment of IPAF.


Assuntos
Galectinas/imunologia , Fibrose Pulmonar Idiopática/imunologia , Imunidade Humoral , Células T Auxiliares Foliculares/imunologia , Animais , Autoanticorpos/sangue , Autoimunidade/imunologia , Estudos de Casos e Controles , Feminino , Galectinas/genética , Galectinas/metabolismo , Centro Germinativo/imunologia , Humanos , Fibrose Pulmonar Idiopática/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Células T Auxiliares Foliculares/fisiologia
4.
J Mater Sci Mater Med ; 27(5): 92, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26979976

RESUMO

Zein porous scaffolds modified with fatty acids have shown great improvement in mechanical properties and good cell compatibility in vitro, indicating the potential application as a bone tissue engineering substitute. The present study was conducted to systematically investigate whether the addition of fatty acids affects the short-term (up to 12 weeks) and long-term (up to 1 year) behaviors of scaffolds in vivo, mainly focusing on changes in the degradation period and inflammatory responses. Throughout the implantation period, no abnormal signs occurred and zein porous scaffolds modified with oleic acid showed good tolerance in rabbits, characterized by the growth of relatively more blood vessels in the scaffolds and only a slight degree of fibrosis histology. Moreover, the degradation period was prolonged from 8 months to 1 year as compared to the control. These results affirmed further that zein could be used as a new kind of natural biomaterial suitable for bone tissue engineering.


Assuntos
Neovascularização Fisiológica/fisiologia , Ácido Oleico/farmacologia , Ácidos Esteáricos/farmacologia , Alicerces Teciduais , Zeína , Animais , Materiais Biocompatíveis/química , Teste de Materiais , Ácido Oleico/química , Porosidade , Coelhos , Pele , Ácidos Esteáricos/química , Propriedades de Superfície
5.
Langmuir ; 31(44): 12315-22, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25992643

RESUMO

A conducting polymer polyaniline (PANI) with nanostructure was synthesized on indium tin oxide (ITO) glass. The effect of electrical stimulation on the proliferation and the length of neurites of PC 12 cells was investigated. The dynamic protein adsorption on PANI and ITO surfaces in a cell culture medium was also compared with and without electrical stimulation. The adsorbed proteins were characterized using SDS-PAGE. A PANI coating on ITO surface was shown with 30-50 nm spherical nanostructure. The number of PC 12 cells was significantly greater on the PANI/ITO surface than on ITO and plate surfaces after cell seeding for 24 and 36 h. This result confirmed that the PANI coating is nontoxic to PC 12 cells. The electrical stimulation for 1, 2, and 4 h significantly enhanced the cell numbers for both PANI and ITO conducting surfaces. Moreover, the application of electrical stimulation also improved the neurite outgrowth of PC 12 cells, and the number of PC 12 cells with longer neurite lengths increased obviously under electrical stimulation for the PANI surface. From the mechanism, the adsorption of DMEM proteins was found to be enhanced by electrical stimulation for both PANI/ITO and ITO surfaces. A new band 2 (around 37 kDa) was observed from the collected adsorbed proteins when PC 12 cells were cultured on these surfaces, and culturing PC 12 cells also seemed to increase the amount of band 1 (around 90 kDa). When immersing PANI/ITO and ITO surfaces in a DMEM medium without a cell culture, the number of band 3 (around 70 kDa) and band 4 (around 45 kDa) proteins decreased compared to that of PC 12 cell cultured surfaces. These results are valuable for the design and improvement of the material performance for neural regeneration.


Assuntos
Compostos de Anilina/química , Vidro , Nanoestruturas , Neuritos , Adsorção , Animais , Estimulação Elétrica , Células PC12 , Proteínas/química , Ratos
6.
Small ; 10(2): 399-406, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24039035

RESUMO

Noble metal nanoparticles have attracted much interest in the heterogeneous catalysis. Particularly, efficient manipulation of the responsive catalytic properties of the metal nanoparticles is an interesting topic. In this work, a simple and efficient strategy is developed to regulate the pH-responsive catalytic activities of glucose oxidase (GOx)-mimicking gold nanoparticles (AuNPs). Four DNA strands (regulating strands) that differ slightly in sequences are used to interact non-covalently with citrate-capped AuNPs, resulting in markedly distinct pH-dependent catalytic behavior of AuNPs. This is ascribed to the characteristic pH-induced conformational change of the DNA strands that leads to the different adsorption capability to the NPs surface, as demonstrated by pH-CD profiles of the respective DNA molecules. The pH-dependent catalysis of AuNPs is also encoded with structural information of the double-stranded DNA (including regulating strands and their complementary strands) that has conformation resistant or responsive to pH change. As a result, the catalysis can be programmed into an AND gate, a XNOR gate or a NOT gate, using pH and complementary strand as the inputs, the nanoparticle activity as the output and the regulating strands as the programs. This work can be expanded by engineering the catalytic behavior of noble metal nanoparticles to respond smartly to a variety of environmental stimuli, such as metal ions or light wavelengths. These results may provide insight into understanding ligand-regulated nanometallic catalysis.


Assuntos
DNA/química , Ouro/química , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Catálise , Dicroísmo Circular
7.
Nanotechnology ; 25(27): 275103, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24960297

RESUMO

In this study, two cholesterol derivatives, (4-cholesterocarbonyl-4'-(N,N,N-triethylamine butyloxyl bromide) azobenzene (CAB) and 4-cholesterocarbonyl-4'-(N,N-diethylamine butyloxyl) azobenzene (ACB), one of which is positively charged while the other is neutral, were synthesized and incorporated with phospholipids and cholesterol to form doxorubicin (DOX)-loaded liposomes. PEGylation was achieved by including 1,2-distearoyl-sn-glycero-3-phosphatiylethanol-amine-N-[methoxy-(polyethylene glycol)-2000 (DSPE-PEG2000). Our results showed that PEGylated liposomes displayed significantly improved stability and the drug leakage was decreased compared to the non-PEGylated ones in vitro. The in vivo study with rats also revealed that the pharmacokinetics and circulation half-life of DOX were significantly improved when liposomes were PEGylated (p < 0.05). In particular, the neutral cholesterol derivative ACB played some role in improving liposomes' stability in systemic circulation compared to the conventional PC liposome and the positively charged CAB liposome, with or without PEGylation. In addition, in the case of local drug delivery, the positively charged PEG-liposome not only delivered much more of the drug into the rats' retinas (p < 0.001), but also maintained much longer drug retention time compared to the neutral PEGylated liposomes.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Retina/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/síntese química , Colesterol/análogos & derivados , Colesterol/síntese química , Doxorrubicina/administração & dosagem , Doxorrubicina/síntese química , Doxorrubicina/farmacologia , Feminino , Lipossomos/química , Lipossomos/ultraestrutura , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/síntese química , Polietilenoglicóis/farmacologia , Ratos , Ratos Sprague-Dawley
8.
Environ Pollut ; 357: 124394, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38901819

RESUMO

Microplastics are ubiquitous pollutants in the global marine environment. However, few studies have adequately explored the different toxic mechanisms of microplastics (MPs) and nanoplastics (NPs) in aquatic organisms. The sea cucumber, Apostichopus japonicus, is a key organism in the marine benthic ecosystem due to its crucial roles in biogeochemical cycles and food web. This study investigated the bioaccumulation and adverse effects of polystyrene micro- and nanoplastics (PS-M/NPs) of different sizes (20 µm, 1 µm and 80 nm) in the regenerated intestine of A. japonicus using multi-omics analysis. The results showed that after 30-day exposure at the concentration of 0.1 mg L-1, PS-MPs and PS-NPs accumulated to 155.41-175.04 µg g-1 and 337.95 µg g-1, respectively. This excessive accumulation led to increased levels of antioxidases (SOD, CAT, GPx and T-AOC) and reduced activities of immune enzymes (AKP, ACP and T-NOS), indicating oxidative damage and compromised immunity in the regenerated intestine. PS-NPs had more profound negative impacts on cell proliferation and differentiation compared to PS-MPs. Transcriptomic analysis revealed that PS-NPs primarily affected pathways related to cellular components, e.g., ribosome, and oxidative phosphorylation. In comparison, PS-MPs had greater influences on actin-related organization and organic compound metabolism. In the PS-M/NPs-treated groups, differentially expressed metabolites were mainly amino acids, fatty acids, glycerol phospholipid, and purine nucleosides. Additionally, microbial community reconstruction in the regenerated intestine was severely disrupted by the presence of PS-M/NPs. In the PS-NPs group, Burkholderiaceae abundance significantly increased while Rhodobacteraceae abundance decreased. Correlation analyses demonstrated that intestinal regeneration of A. japonicus was closely linked to its enteric microorganisms. These microbiota-host interactions were notably affected by different PS-M/NPs, with PS-NPs exposure causing the most remarkable disruption of mutual symbiosis. The multi-omic approaches used here provide novel insights into the size-dependent toxicity of PS-M/NPs and highlight their detrimental effects on invertebrates in M/NPs-polluted marine benthic ecosystems.


Assuntos
Intestinos , Microplásticos , Poliestirenos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Poliestirenos/toxicidade , Intestinos/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Nanopartículas/toxicidade , Stichopus/efeitos dos fármacos , Tamanho da Partícula , Pepinos-do-Mar
9.
Mult Scler ; 19(5): 639-43, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23069875

RESUMO

Two patients presented with initial symptoms of headache and fever, and two weeks later had disturbance of consciousness. Cerebrospinal fluid (CSF) showed pleocytosis >500×10²/L. Magnetic resonance imaging (MRI) showed multiple brain lesions at sites of high aquaporin-4 (AQP-4) expression. Case 1 presented optic neuritis four years after the first attack and case 2 had symptoms of myelitis three weeks after headache. Serum AQP-4 antibody was positive in both cases, and the diagnosis of neuromyelitis optica spectrum disorder (NMOSD) was made. Accordingly, NMOSD can initially present as meningoencephalitis mimicking intracranial infection, and the characteristic MRI imaging is quite critical for differentiation.


Assuntos
Meningoencefalite/diagnóstico , Neuromielite Óptica/diagnóstico , Adulto , Aquaporina 4/imunologia , Autoanticorpos/imunologia , Encéfalo/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Meningoencefalite/etiologia , Meningoencefalite/imunologia , Neuromielite Óptica/complicações , Neuromielite Óptica/imunologia
10.
J Environ Sci (China) ; 25(2): 376-85, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23596959

RESUMO

The growth, cellular total lipids, bioaccumulation amount, and bioaccumulation factors (BAFs) of 2,4,4'-tribromodiphenyl ether (BDE28), 2,2',4,4'-tetrabromodiphenyl ether (BDE47), and 2,2',4,4',5-pentabromodiphenyl ether (BDE99) in a semi-continuous culture of Prorocentrum donghaiense were studied in relation to nitrate (0, 128, and 512 micromol/L) and phosphate (0, 8, and 32 micromol/L) concentrations. The BDE28, BDE47, and BDE99 content per cell under 0 micromol N/L were 3.77 x 10(-6), 3.95 x 10(-6), and 4.32 x 10-6 ng/cell, respectively, which were significantly higher than those under 128 and 512 micromol N/L. A nearly 5-fold increase in polybrominated diphenyl ether (PBDE) content per algal cell was found between 0 and 8 micromol P/L and between 8 and 32 micromol P/L. With increasing N and P concentrations, the PBDE content per volume of algal culture and the accumulation percentage of available PBDEs declined slightly. The BAFs for the PBDEs based on lipids showed that the logBAF(lip) under 0 micromol N/L was higher than those under 128 and 512 micromol N/L. The logBAF(lip) under 0 micromol P/L was higher than that under 8 micromol P/L but lower than that under 32 micromol P/L. Correlation analysis indicated a significant negative correlation between nutrient concentration and cellular total lipids, as well as the PBDE content per cell. The results indicate that different N and P concentrations change the total lipids content of P. donghaiense, thereby resulting in varying PBDE accumulation.


Assuntos
Dinoflagellida/metabolismo , Éteres Difenil Halogenados/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo
11.
Micromachines (Basel) ; 14(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37241646

RESUMO

A surface-potential-based analytical large-signal model, which is applicable to both ballistic and quasi-ballistic transport in InGaAs high electron mobility transistors, is developed. Based on the one-flux method and a new transmission coefficient, a new two-dimensional electron gas charge density is derived, while the dislocation scattering is novelly taken into account. Then, a unified expression for Ef valid in all the regions of gate voltages is determined, which is utilized to directly calculate the surface potential. The flux is used to derive the drain current model incorporating important physical effects. Moreover, the gate-source capacitance Cgs and gate-drain capacitance Cgd are obtained analytically. The model is extensively validated with the numerical simulations and measured data of the InGaAs HEMT device with the gate length of 100 nm. The model is in excellent agreement with the measurements under I-V, C-V, small-signal conditions, and large-signal conditions.

12.
Environ Pollut ; 325: 121453, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934965

RESUMO

Antibiotics and heavy metals can have a negative impact on the nitrogen (N) cycle and microbial metabolism in coastal aquaculture environment. An indoor simulated culture experiment was conducted to explore how sulfadiazine and lead influence the N cycling in aquatic environment. Specifically, the experiment involved adding sulfadiazine (SDZ), lead (Pb), a combination of SDZ and Pb (SP), and a control group (CK). The fluxes and contents of ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N) and nitrite nitrogen (NO2--N) in sediment-water interface and sediments, the abundance of N cycle function genes (amoA_AOB, hzsA, nar, nirK, nirS, norB and nosZ) and microbiota in sediments were analyzed. The results showed that the presence of SDZ and Pb inhibited the nitrification function gene and nitrifiers abundance in surface sediment, and thus leading to more accumulation of NH4+ and NO2- in overlying water. Pb exposure increased the abundances of denitrifying bacteria stimulated the first three steps of denitrification in the sediment, resulting in more removal of NO3- from the sediment, but possibly had the risk of releasing more greenhouse gas N2O. Conversely, the presence of SDZ ultimately inhibited denitrification and anammox bacterial activities in the sediment. This study revealed how heavy metal and antibiotic impair the microbial communities and N cycling function gene expression, leading to the deterioration of typical coastal aquaculture environments.


Assuntos
Desnitrificação , Metais Pesados , Antibacterianos/toxicidade , Antibacterianos/metabolismo , Água/metabolismo , Dióxido de Nitrogênio/metabolismo , Chumbo/metabolismo , Ciclo do Nitrogênio , Bactérias/metabolismo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Nitrogênio/metabolismo , Sulfadiazina/metabolismo
13.
Biomed Mater ; 18(2)2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36649654

RESUMO

The identification of degraded products of implanted scaffolds is desirable to avoid regulatory concerns.In vivoidentification of products produced by the degradation of natural protein-based scaffolds is complex and demands the establishment of a routine analytical method. In this study, we developed a method for the identification of peptides produced by the degradation of zein bothin vitroandin vivousing high performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Forin vitroexperiments, zein was degraded enzymatically and analyzed produced peptides.In vitrostudy showed cytocompatibility of peptides present in the hydrolysate of zein with no induction of apoptosis and cell senescence. Forin vivoexperiment, zein gels were prepared and subcutaneously implanted in rats. Peptides produced by the degradation of zein were identified and few were selected as targeted (unique peptides) and two peptides were synthesized as the reference sequence of these peptides. Further, peptide analysis using HPLC-MS/MS of different organs was performed after 2 and 8 weeks of implantation of zein gel in rats. It was found that zein-originated peptides were accumulated in different organs. QQHIIGGALF or peptides with same fractions were identified as unique peptides. These peptides were also found in control rats with regular rat feed, which means the degradation of implanted zein biomaterial produced food related peptides of non-toxic nature. Furthermore, hemotoxylin and eosin (H&E) staining exhibited normal features. Overall, zein degraded products showed cytocompatibility and did not induce organ toxicity, and QQHIIGGALF can act as a standard peptide for tracing and determining zein degradation. The study also provides the feasibility of complex analysis on identification and quantification of degradation products of protein-based scaffolds.


Assuntos
Espectrometria de Massas em Tandem , Zeína , Ratos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Zeína/química , Peptídeos/química , Proteínas
14.
Environ Pollut ; 319: 121015, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36610653

RESUMO

Micro/nano-plastics (M/NPs) are emerging contaminants in aquatic environment, however, little knowledge regarding the adverse effects of functionalized NPs has been documented so far. This study investigated the accumulation of different polystyrene nanoplastics (PS-NPs, i.e., plain PS, carboxyl-functional PS-COOH and amino-functional PS-NH2) at two particle sizes of 100 nm and 200 nm, and evaluated the impacts on oxidative stress, energy metabolism and mitochondrial pathway responses in intestine and respiratory tree of Apostichopus japonicus during the 20-d exposure experiment. The results showed that there were significant interactions of particle size and nanoplastic type on the accumulation of different PS-NPs. Exposure to NPs significantly increased the production of malondialdehyde, glutathione and reactive oxygen species, as well as the activities of antioxidant enzymes including glutathione reductase, superoxide dismutase and catalase, resulting in various degrees of oxidative damage in sea cucumber. The significant decrease in adenosine triphosphate content and increases in alkaline phosphatase and lactate dehydrogenase activities suggested that NPs impaired energy metabolism and modified their energy allocation. After 20-d exposure, the complex I, II and III activities in mitochondrial respiratory chain were significantly inhibited. Meanwhile, the Bax and Caspase-3 gene expression were significantly up-regulated, and Bacl-2 was down-regulated, indicating the toxicity on mitochondrial pathway of A. japonicus. The calculated IBR values elucidated the greater detriment to mitochondrial pathway than oxidative stress and energy metabolism. For 100 nm particle size, plain PS has stronger influence on all the biomarkers compared to PS-COOH/NH2, however, the opposite trends were observed in 200 nm PS-NPs. Furthermore, 100 nm PS-NPs were recognized to be more hazardous to sea cucumber than 200 nm microbeads. These findings provide new insights for understanding the differentiated toxic effects of functionalized NPs in marine invertebrates.


Assuntos
Nanopartículas , Pepinos-do-Mar , Stichopus , Poluentes Químicos da Água , Animais , Bioacumulação , Metabolismo Energético , Microplásticos/toxicidade , Nanopartículas/toxicidade , Estresse Oxidativo , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Mitocôndrias/metabolismo
15.
Biomater Adv ; 145: 213225, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36527960

RESUMO

Zein is a biocompatible and biodegradable corn protein with promising properties for biomedical applications. It is hydrophobic with the ability to self-assemble in an aqueous medium. It can also form a gel in hydroalcoholic solvents at higher concentrations. Few studies have investigated the biomedical significance of zein gels. Herein, we exploited the injectability and water-responsive increase in stiffness of zein gel to achieve hemostasis by physical blockage of the wound and clot formation. The release of components from the gel further aided blood clotting and gave a higher clot strength than a natural clot, which can prevent rebleeding. Rabbit aortic injury and swine femoral artery injury models were used to evaluate the hemostatic efficacy of the zein gel. Zein gel was effective in both hemostatic models without applying external compression due to an in situ increase in stiffness, while the control (Celox™ Gauze) required external compression at the wound site. The zein gel was easily removed after hemostasis due to hydrophobic self-assembly. Overall, zein gel is proposed as an effective hemostatic product for any wound shape owing to its good shape adaptability and rapid in situ blood-responsive stiffness increase.


Assuntos
Hemostáticos , Zeína , Suínos , Animais , Coelhos , Hemostáticos/farmacologia , Zeína/química , Hemostasia , Géis , Bandagens
16.
Plant Physiol Biochem ; 196: 587-595, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36780721

RESUMO

Shikonin is a red naphthoquinone natural product from plants with high economical and medical values. The para-hydroxybenzoic acid geranyltransferase (PGT) catalyzes the key regulatory step of shikonin biosynthesis. PGTs from Lithospermum erythrorhizon have been well-characterized and used in industrial shikonin production. However, its perennial medicinal plant Arnebia euchroma accumulates much more pigment and the underlying mechanism remains obscure. Here, we discovered and characterized the different isoforms of AePGTs. Phylogenetic study and structure modeling suggested that the N-terminal of AePGT6 contributed to its highest activity among 7 AePGTs. Indeed, AePGT2 and AePGT3 fused with 60 amino acids from the N-terminal of AePGT6 showed even higher activity than AePGT6, while native AePGT2 and AePGT3 don't have catalytic activity. Our result not only provided a mechanistic explanation of high shikonin contents in Arnebia euchroma but also engineered a best-performing PGT to achieve the highest-to-date production of 3-geranyl-4-hydroxybenzoate acid, an intermedium of shikonin.


Assuntos
Boraginaceae , Naftoquinonas , Filogenia , Boraginaceae/genética , Boraginaceae/metabolismo , Naftoquinonas/química , Naftoquinonas/metabolismo , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo
17.
Bioact Mater ; 23: 343-352, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36474653

RESUMO

Four-dimensional (4D) printing is a promising technology that provides solutions for compelling needs in various fields. Most of the reported 4D printed systems are based on the temporal shape transformation of printed subjects. Induction of temporal heterogenicity in functions in addition to shape may extend the scope of 4D printing. Herein, we report a 4D printing approach using plant protein (zein) gel inspired by the amyloid fibrils formation mechanism. The printing of zein gel in a specialized layered-Carbopol supporting bath with different water concentrations in an ethanol-water mixture modulates hydrophobic and hydrogen bonding that causes temporal changes in functions. The part of the construct printed in a supporting bath with higher water content exhibits higher drug loading, faster drug release and degradation than those printed in the supporting bath with lower water content. Tri-segment conduit and butterfly-shaped construct with two asymmetrical wings are printed using this system to evaluate biomedical function as nerve conduit and drug delivery system. 4D printed conduits are also effective as a drug-eluting urethral stent in the porcine model. Overall, this study extends the concept of 4D printing beyond shape transformation and presents an approach of fabricating specialized baths for 4D printing that can also be extended to other materials to obtain 4D printed medical devices with translational potential.

18.
Biomater Adv ; 151: 213473, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37245344

RESUMO

Zein has enormous potential for application in biomedical field due to biodegradation and biocompatibility, we have recently prepared zein gel as a possible 3D printing ink. Our previous studies found that the pore structure in zein material can reduce early inflammation, promote the polarization of macrophages toward the M2 phenotype, and accelerate nerve regeneration. To further explore the role of zein in nerve repair, we used 4D printing technique to create nerve conduits with zein protein gel, and designed 2 types of tri-segment conduits with different degradation rates. Structural parts printed in support baths with higher water content show faster degradation rates than those printed in support baths with lower water content. The conduits that degraded quickly at both ends and slowly in the middle (CB75-CB40-CB75) and the conduits that degraded slowly at both ends and quickly in the middle (CB40-CB75-CB40) were 4D printed, respectively. Animal experiments suggest that the CB75-CB40-CB75 conduit is better for nerve repair, which may be because its degradation pattern can match to the pattern of nerve regeneration better. Our new strategy through 4D printing indicated that fine modulation in conduit degradation can affect efficacy of nerve repair significantly.


Assuntos
Tecido Nervoso , Zeína , Ratos , Animais , Ratos Sprague-Dawley , Zeína/química , Tinta , Nervo Isquiático/cirurgia , Nervo Isquiático/fisiologia
19.
Front Plant Sci ; 14: 1160571, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180378

RESUMO

Shikonin derivatives are natural naphthoquinone compounds and the main bioactive components produced by several boraginaceous plants, such as Lithospermum erythrorhizon and Arnebia euchroma. Phytochemical studies utilizing both L. erythrorhizon and A. euchroma cultured cells indicate the existence of a competing route branching out from the shikonin biosynthetic pathway to shikonofuran. A previous study has shown that the branch point is the transformation from (Z)-3''-hydroxy-geranylhydroquinone to an aldehyde intermediate (E)-3''-oxo-geranylhydroquinone. However, the gene encoding the oxidoreductase that catalyzes the branch reaction remains unidentified. In this study, we discovered a candidate gene belonging to the cinnamyl alcohol dehydrogenase family, AeHGO, through coexpression analysis of transcriptome data sets of shikonin-proficient and shikonin-deficient cell lines of A. euchroma. In biochemical assays, purified AeHGO protein reversibly oxidized (Z)-3''-hydroxy-geranylhydroquinone to produce (E)-3''-oxo-geranylhydroquinone followed by reversibly reducing (E)-3''-oxo-geranylhydroquinone to (E)-3''-hydroxy-geranylhydroquinone, resulting in an equilibrium mixture of the three compounds. Time course analysis and kinetic parameters showed that the reduction of (E)-3''-oxo-geranylhydroquinone was stereoselective and efficient in presence of NADPH, which determined that the overall reaction proceeded from (Z)-3''-hydroxy-geranylhydroquinone to (E)-3''-hydroxy-geranylhydroquinone. Considering that there is a competition between the accumulation of shikonin and shikonofuran derivatives in cultured plant cells, AeHGO is supposed to play an important role in the metabolic regulation of the shikonin biosynthetic pathway. Characterization of AeHGO should help expedite the development of metabolic engineering and synthetic biology toward production of shikonin derivatives.

20.
Plants (Basel) ; 12(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37653869

RESUMO

Maize, as a glycophyte, is hypersensitive to salinity, but the salt response mechanism of maize remains unclear. In this study, the physiological, biochemical, and molecular responses of two contrasting inbred lines, the salt-tolerant QXH0121 and salt-sensitive QXN233 lines, were investigated in response to salt stress. Under salt stress, the tolerant QXH0121 line exhibited good performance, while in the sensitive QXN233 line, there were negative effects on the growth of the leaves and roots. The most important finding was that QXH0121 could reshift Na+ from shoots into long roots, migrate excess Na+ in shoots to alleviate salt damage to shoots, and also improve K+ retention in shoots, which were closely associated with the enhanced expression levels of ZmHAK1 and ZmNHX1 in QXH0121 compared to those in QXN233 under salt stress. Additionally, QXH0121 leaves accumulated more proline, soluble protein, and sugar contents and had higher SOD activity levels than those observed in QXN233, which correlated with the upregulation of ZmP5CR, ZmBADH, ZmTPS1, and ZmSOD4 in QXH0121 leaves. These were the main causes of the higher salt tolerance of QXH0121 in contrast to QXN233. These results broaden our knowledge about the underlying mechanism of salt tolerance in different maize varieties, providing novel insights into breeding maize with a high level of salt resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA