Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 21(2): 467-480, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38266250

RESUMO

Photothermal therapy (PTT) is an effective cancer treatment method. Due to its easy focusing and tunability of the irradiation light, direct and accurate local treatment can be performed in a noninvasive manner by PTT. This treatment strategy requires the use of photothermal agents to convert light energy into heat energy, thereby achieving local heating and triggering biochemical processes to kill tumor cells. As a key factor in PTT, the photothermal conversion ability of photothermal agents directly determines the efficacy of PTT. In addition, photothermal agents generally have photothermal imaging (PTI) and photoacoustic imaging (PAI) functions, which can not only guide the optimization of irradiation conditions but also achieve the integration of disease diagnosis. If the photothermal agents have function of fluorescence imaging (FLI) or fluorescence enhancement, they can not only further improve the accuracy in disease diagnosis but also accurately determine the tumor location through multimodal imaging for corresponding treatment. In this paper, we summarize recent advances in photothermal agents with FLI or fluorescence enhancement functions for PTT and tumor diagnosis. According to the different recognition sites, the application of specific targeting photothermal agents is introduced. Finally, limitations and challenges of photothermal agents with fluorescence imaging/enhancement in the field of PTT and tumor diagnosis are prospected.


Assuntos
Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Terapia Fototérmica , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Nanomedicina Teranóstica/métodos , Imagem Óptica
2.
Ultrason Sonochem ; 104: 106817, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38394824

RESUMO

A comprehensive investigation aimed to access the impacts of ultrasonic, microwave, and ultrasonic-microwave synergistic modification on the physicochemical properties, microstructure, and functional properties of corn bran insoluble dietary fiber (CBIDF). Our findings revealed that CBIDF presented a porous structure with loose folds, and the particle size and relative crystallinity were slightly decreased after modification. The CBIDF, which was modified by ultrasound-microwave synergistic treatment, exhibited remarkable benefits in terms of its adsorption capacity, and cholate adsorption capacity. Furthermore, the modification improved the in vitro hypoglycemic activity of the CBIDF by enhancing glucose absorption, retarding the starch hydrolysis, and facilitating the diffusion of glucose solution. The findings from the in vitro probiotic activity indicate that ultrasound-microwave synergistic modification also enhances the growth-promoting ability and adsorbability of Lactobacillus acidophilus and Bifidobacterium longum. Additionally, the level of soluble dietary fiber was found to be positively correlated with CBIDF adsorbability, while the crystallinity of CBIDF showed a negative correlation with α-glucosidase and α-amylase inhibition activity, as well as water-holding capacity, and oil-holding capacity.


Assuntos
Micro-Ondas , Zea mays , Ultrassom , Fibras na Dieta , Glucose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA