Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 597(7874): 119-125, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34433969

RESUMO

Meningiomas are the most common primary intracranial tumour in adults1. Patients with symptoms are generally treated with surgery as there are no effective medical therapies. The World Health Organization histopathological grade of the tumour and the extent of resection at surgery (Simpson grade) are associated with the recurrence of disease; however, they do not accurately reflect the clinical behaviour of all meningiomas2. Molecular classifications of meningioma that reliably reflect tumour behaviour and inform on therapies are required. Here we introduce four consensus molecular groups of meningioma by combining DNA somatic copy-number aberrations, DNA somatic point mutations, DNA methylation and messenger RNA abundance in a unified analysis. These molecular groups more accurately predicted clinical outcomes compared with existing classification schemes. Each molecular group showed distinctive and prototypical biology (immunogenic, benign NF2 wild-type, hypermetabolic and proliferative) that informed therapeutic options. Proteogenomic characterization reinforced the robustness of the newly defined molecular groups and uncovered highly abundant and group-specific protein targets that we validated using immunohistochemistry. Single-cell RNA sequencing revealed inter-individual variations in meningioma as well as variations in intrinsic expression programs in neoplastic cells that mirrored the biology of the molecular groups identified.


Assuntos
Biomarcadores Tumorais/metabolismo , Meningioma/classificação , Meningioma/metabolismo , Proteogenômica , Metilação de DNA , Análise de Dados , Descoberta de Drogas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Meningioma/tratamento farmacológico , Meningioma/genética , Mutação , RNA-Seq , Reprodutibilidade dos Testes , Análise de Célula Única
2.
Proc Natl Acad Sci U S A ; 120(31): e2303448120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487081

RESUMO

Cancer cells are commonly subjected to endoplasmic reticulum (ER) stress. To gain survival advantage, cancer cells exploit the adaptive aspects of the unfolded protein response such as upregulation of the ER luminal chaperone GRP78. The finding that when overexpressed, GRP78 can escape to other cellular compartments to gain new functions regulating homeostasis and tumorigenesis represents a paradigm shift. Here, toward deciphering the mechanisms whereby GRP78 knockdown suppresses EGFR transcription, we find that nuclear GRP78 is prominent in cancer and stressed cells and uncover a nuclear localization signal critical for its translocation and nuclear activity. Furthermore, nuclear GRP78 can regulate expression of genes and pathways, notably those important for cell migration and invasion, by interacting with and inhibiting the activity of the transcriptional repressor ID2. Our study reveals a mechanism for cancer cells to respond to ER stress via transcriptional regulation mediated by nuclear GRP78 to adopt an invasive phenotype.


Assuntos
Núcleo Celular , Chaperona BiP do Retículo Endoplasmático , Humanos , Carcinogênese , Movimento Celular , Transformação Celular Neoplásica
3.
Nat Chem Biol ; 19(2): 187-197, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36266352

RESUMO

Lipids contribute to the structure, development, and function of healthy brains. Dysregulated lipid metabolism is linked to aging and diseased brains. However, our understanding of lipid metabolism in aging brains remains limited. Here we examined the brain lipidome of mice across their lifespan using untargeted lipidomics. Co-expression network analysis highlighted a progressive decrease in 3-sulfogalactosyl diacylglycerols (SGDGs) and SGDG pathway members, including the potential degradation products lyso-SGDGs. SGDGs show an age-related decline specifically in the central nervous system and are associated with myelination. We also found that an SGDG dramatically suppresses LPS-induced gene expression and release of pro-inflammatory cytokines from macrophages and microglia by acting on the NF-κB pathway. The detection of SGDGs in human and macaque brains establishes their evolutionary conservation. This work enhances interest in SGDGs regarding their roles in aging and inflammatory diseases and highlights the complexity of the brain lipidome and potential biological functions in aging.


Assuntos
Envelhecimento , Lipídeos , Animais , Humanos , Camundongos , Envelhecimento/genética , Anti-Inflamatórios , Encéfalo/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo
4.
Nature ; 574(7779): 559-564, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645735

RESUMO

Although glucose-sensing neurons were identified more than 50 years ago, the physiological role of glucose sensing in metazoans remains unclear. Here we identify a pair of glucose-sensing neurons with bifurcated axons in the brain of Drosophila. One axon branch projects to insulin-producing cells to trigger the release of Drosophila insulin-like peptide 2 (dilp2) and the other extends to adipokinetic hormone (AKH)-producing cells to inhibit secretion of AKH, the fly analogue of glucagon. These axonal branches undergo synaptic remodelling in response to changes in their internal energy status. Silencing of these glucose-sensing neurons largely disabled the response of insulin-producing cells to glucose and dilp2 secretion, disinhibited AKH secretion in corpora cardiaca and caused hyperglycaemia, a hallmark feature of diabetes mellitus. We propose that these glucose-sensing neurons maintain glucose homeostasis by promoting the secretion of dilp2 and suppressing the release of AKH when haemolymph glucose levels are high.


Assuntos
Encéfalo/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Neurônios/metabolismo , Animais , Axônios/metabolismo , Encéfalo/anatomia & histologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Glucose/análise , Hormônios de Inseto/metabolismo , Masculino , Inibição Neural , Vias Neurais , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo
5.
Nucleic Acids Res ; 51(19): 10768-10781, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37739431

RESUMO

Translational readthrough of UGA stop codons by selenocysteine-specific tRNA (tRNASec) enables the synthesis of selenoproteins. Seryl-tRNA synthetase (SerRS) charges tRNASec with serine, which is modified into selenocysteine and delivered to the ribosome by a designated elongation factor (eEFSec in eukaryotes). Here we found that components of the human selenocysteine incorporation machinery (SerRS, tRNASec, and eEFSec) also increased translational readthrough of non-selenocysteine genes, including VEGFA, to create C-terminally extended isoforms. SerRS recognizes target mRNAs through a stem-loop structure that resembles the variable loop of its cognate tRNAs. This function of SerRS depends on both its enzymatic activity and a vertebrate-specific domain. Through eCLIP-seq, we identified additional SerRS-interacting mRNAs as potential readthrough genes. Moreover, SerRS overexpression was sufficient to reverse premature termination caused by a pathogenic nonsense mutation. Our findings expand the repertoire of selenoprotein biosynthesis machinery and suggest an avenue for therapeutic targeting of nonsense mutations using endogenous factors.


Assuntos
Biossíntese de Proteínas , Serina-tRNA Ligase , Humanos , Códon sem Sentido , Códon de Terminação , RNA Mensageiro/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Serina-tRNA Ligase/genética
6.
Proc Natl Acad Sci U S A ; 119(36): e2204835119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044549

RESUMO

Physical activity provides clinical benefit in Parkinson's disease (PD). Irisin is an exercise-induced polypeptide secreted by skeletal muscle that crosses the blood-brain barrier and mediates certain effects of exercise. Here, we show that irisin prevents pathologic α-synuclein (α-syn)-induced neurodegeneration in the α-syn preformed fibril (PFF) mouse model of sporadic PD. Intravenous delivery of irisin via viral vectors following the stereotaxic intrastriatal injection of α-syn PFF cause a reduction in the formation of pathologic α-syn and prevented the loss of dopamine neurons and lowering of striatal dopamine. Irisin also substantially reduced the α-syn PFF-induced motor deficits as assessed behaviorally by the pole and grip strength test. Recombinant sustained irisin treatment of primary cortical neurons attenuated α-syn PFF toxicity by reducing the formation of phosphorylated serine 129 of α-syn and neuronal cell death. Tandem mass spectrometry and biochemical analysis revealed that irisin reduced pathologic α-syn by enhancing endolysosomal degradation of pathologic α-syn. Our findings highlight the potential for therapeutic disease modification of irisin in PD.


Assuntos
Corpo Estriado , Fibronectinas , Doença de Parkinson , alfa-Sinucleína , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Fibronectinas/administração & dosagem , Fibronectinas/genética , Fibronectinas/metabolismo , Camundongos , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
7.
Acta Neuropathol ; 147(1): 68, 2024 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-38583102

RESUMO

Mutations in the pivotal metabolic isocitrate dehydrogenase (IDH) enzymes are recognized to drive the molecular footprint of diffuse gliomas, and patients with IDH mutant gliomas have overall favorable outcomes compared to patients with IDH wild-type tumors. However, survival still varies widely among patients with IDH mutated tumors. Here, we aimed to characterize molecular signatures that explain the range of IDH mutant gliomas. By integrating matched epigenome-wide methylome, transcriptome, and global metabolome data in 154 patients with gliomas, we identified a group of IDH mutant gliomas with globally altered metabolism that resembled IDH wild-type tumors. IDH-mutant gliomas with altered metabolism have significantly shorter overall survival from their IDH mutant counterparts that is not fully accounted for by recognized molecular prognostic markers of CDKN2A/B loss and glioma CpG Island Methylator Phenotype (GCIMP) status. IDH-mutant tumors with dysregulated metabolism harbored distinct epigenetic alterations that converged to drive proliferative and stem-like transcriptional profiles, providing a window to target novel dependencies in gliomas.


Assuntos
Glioma , Isocitrato Desidrogenase , Humanos , Isocitrato Desidrogenase/genética , Glioma/genética , Epigenômica , Mutação/genética , Transcriptoma
8.
Artigo em Inglês | MEDLINE | ID: mdl-39177431

RESUMO

OBJECTIVES: Mortality from pneumonia is three times higher in Asia compared with industrialized countries. We aimed to determine the epidemiology, microbiology, and outcome of severe pneumonia in PICUs across the Pediatric Acute and Critical Care Medicine Asian Network (PACCMAN). DESIGN: Prospective multicenter observational study from June 2020 to September 2022. SETTING: Fifteen PICUs in PACCMAN. PATIENTS: All children younger than 18 years old diagnosed with pneumonia and admitted to the PICU. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Clinical, microbiologic, and outcome data were recorded. The primary outcome was PICU mortality. Univariate and multivariable logistic regression was performed to investigate associations between PICU mortality and explanatory risk factors on presentation to the PICU. Among patients screened, 846 of 11,778 PICU patients (7.2%) with a median age of 1.2 years (interquartile range, 0.4-3.7 yr) had pneumonia. Respiratory syncytial virus was detected in 111 of 846 cases (13.1%). The most common bacteria were Staphylococcus species (71/846 [8.4%]) followed by Pseudomonas species (60/846 [7.1%]). Second-generation cephalosporins (322/846 [38.1%]) were the most common broad-spectrum antibiotics prescribed, followed by carbapenems (174/846 [20.6%]). Invasive mechanical ventilation and noninvasive respiratory support was provided in 438 of 846 (51.8%) and 500 of 846 (59.1%) patients, respectively. PICU mortality was 65 of 846 (7.7%). In the multivariable logistic regression model, age (adjusted odds ratio [aOR], 1.08; 95% CI, 1.00-1.16), Pediatric Index of Mortality 3 score (aOR, 1.03; 95% CI, 1.02-1.05), and drowsiness (aOR, 2.73; 95% CI, 1.24-6.00) were associated with greater odds of mortality. CONCLUSIONS: In the PACCMAN contributing PICUs, pneumonia is a frequent cause for admission (7%) and is associated with a greater odds of mortality.

9.
J Infect Dis ; 228(11): 1559-1570, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37540098

RESUMO

BACKGROUND: The aim of this study was to determine whether neurometabolite abnormalities indicating neuroinflammation and neuronal injury are detectable in individuals post-coronavirus disease 2019 (COVID-19) with persistent neuropsychiatric symptoms. METHODS: All participants were studied with proton magnetic resonance spectroscopy at 3 T to assess neurometabolite concentrations (point-resolved spectroscopy, relaxation time/echo time = 3000/30 ms) in frontal white matter (FWM) and anterior cingulate cortex-gray matter (ACC-GM). Participants also completed the National Institutes of Health Toolbox cognition and motor batteries and selected modules from the Patient-Reported Outcomes Measurement Information System. RESULTS: Fifty-four participants were evaluated: 29 post-COVID-19 (mean ± SD age, 42.4 ± 12.3 years; approximately 8 months from COVID-19 diagnosis; 19 women) and 25 controls (age, 44.1 ± 12.3 years; 14 women). When compared with controls, the post-COVID-19 group had lower total N-acetyl compounds (tNAA; ACC-GM: -5.0%, P = .015; FWM: -4.4%, P = .13), FWM glutamate + glutamine (-9.5%, P = .001), and ACC-GM myo-inositol (-6.2%, P = .024). Additionally, only hospitalized patients post-COVID-19 showed age-related increases in myo-inositol, choline compounds, and total creatine (interaction P = .029 to <.001). Across all participants, lower FWM tNAA and higher ACC-GM myo-inositol predicted poorer performance on several cognitive measures (P = .001-.009), while lower ACC-GM tNAA predicted lower endurance on the 2-minute walk (P = .005). CONCLUSIONS: In participants post-COVID-19 with persistent neuropsychiatric symptoms, the lower-than-normal tNAA and glutamate + glutamine indicate neuronal injury, while the lower-than-normal myo-inositol reflects glial dysfunction, possibly related to mitochondrial dysfunction and oxidative stress in Post-COVID participants with persistent neuropsychiatric symptoms.


Assuntos
COVID-19 , Glutamina , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Espectroscopia de Prótons por Ressonância Magnética/métodos , Glutamina/metabolismo , Prótons , Teste para COVID-19 , COVID-19/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Inositol/metabolismo , Glutamatos/metabolismo , Ácido Aspártico/metabolismo
10.
Breast Cancer Res Treat ; 197(3): 461-478, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36473978

RESUMO

PURPOSE: Inflammatory breast cancer (IBC) is characterized by numerous tumor emboli especially within dermal lymphatics. The explanation remains a mystery. METHODS: This study combines experimental studies with two different IBC xenografts with image algorithmic studies utilizing human tissue microarrays (TMAs) of IBC vs non-IBC cases to support a novel hypothesis to explain IBC's sina qua non signature of florid lymphovascular emboli. RESULTS: In the human TMAs, compared to tumor features like nuclear grade (size), mitosis and Ki-67 immunoreactivity which show that IBC is only modestly more proliferative with larger nuclei than non-IBC, what really sets IBC apart is the markedly greater number of tumor emboli and distinctly smaller emboli whose numbers indicate geometric or exponential differences between IBC and non-IBC. In the experimental xenograft studies, Mary-X gives rise to tight spheroids in vitro which exhibit dynamic budding into smaller daughter spheroids whereas Karen-X exhibits only loose non-budding aggregates. Furthermore Mary-X emboli also bud dramatically into smaller daughter emboli in vivo. The mechanism that regulates this involves the generation of E-cad/NTF1, a calpain-mediated cleavage 100 kDa product of 120 kDa full length membrane E-cadherin. Inhibiting this calpain-mediated cleavage of E-cadherin by blocking either the calpain site of cleavage (SC) or the site of binding (SB) with specific decapeptides that both penetrate the cell membrane and mimic either the cleavage site or the binding site on E-cadherin, inhibits the generation of E-cad/NTF1 in a dose-dependent manner, reduces spheroid compactness and decreases budding. CONCLUSION: Since E-cad/NFT1 retains the p120ctn binding site but loses the α-and ß-catenin sites, promoting its 360° distribution around the cell's membrane, the vacilating levels of this molecule trigger budding of both the spheroids as well as the emboli. Recurrent and geometric budding of parental emboli into daughter emboli then would account for the plethora of emboli seen in IBC.


Assuntos
Neoplasias da Mama , Neoplasias Inflamatórias Mamárias , Células Neoplásicas Circulantes , Feminino , Humanos , Caderinas/metabolismo , Calpaína , Neoplasias Inflamatórias Mamárias/patologia , Células Neoplásicas Circulantes/patologia , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Animais
11.
Acta Neuropathol ; 146(1): 145-162, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37093270

RESUMO

Homozygous deletion of CDKN2A/B was recently incorporated into the World Health Organization classification for grade 3 meningiomas. While this marker is overall rare in meningiomas, its relationship to other CDKN2A alterations on a transcriptomic, epigenomic, and copy number level has not yet been determined. We therefore utilized multidimensional molecular data of 1577 meningioma samples from 6 independent cohorts enriched for clinically aggressive meningiomas to comprehensively interrogate the spectrum of CDKN2A alterations through DNA methylation, copy number variation, transcriptomics, and proteomics using an integrated molecular approach. Homozygous CDKN2A/B deletions were identified in only 7.1% of cases but were associated with significantly poorer outcomes compared to tumors without these deletions. Heterozygous CDKN2A/B deletions were identified in 2.6% of cases and had similarly poor outcomes as those with homozygous deletions. Among tumors with intact CDKN2A/B (without a homozygous or heterozygous deletion), we found a distinct difference in outcome based on mRNA expression of CDKN2A, with meningiomas that had elevated mRNA expression (CDKN2Ahigh) having a significantly shorter time to recurrence. The expression of CDKN2A was independently prognostic after accounting for copy number loss and consistently increased with WHO grade and more aggressive molecular and methylation groups irrespective of cohort. Despite the discordant and mutually exclusive status of the CDKN2A gene in these groups, both CDKN2Ahigh meningiomas and meningiomas with CDKN2A deletions were enriched for similar cell cycle pathways but at different checkpoints. High mRNA expression of CDKN2A was also associated with gene hypermethylation, Rb-deficiency, and lack of response to CDK inhibition. p16 immunohistochemistry could not reliably differentiate between meningiomas with and without CDKN2A deletions but appeared to correlate better with mRNA expression. These findings support the role of CDKN2A mRNA expression as a biomarker of clinically aggressive meningiomas with potential therapeutic implications.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Genes p16 , Meningioma/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Transcriptoma , Variações do Número de Cópias de DNA , Homozigoto , Deleção de Sequência , Neoplasias Meníngeas/genética
12.
J Neurooncol ; 161(3): 491-499, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36701029

RESUMO

BACKGROUND: Vestibular schwannoma (VS) is the most common tumour of the cerebellopontine angle and poses a significant morbidity for patients. While many exhibit benign behaviour, others have a more aggressive nature and pattern of growth. Predicting who will fall into which category consistently remains uncertain. There is a need for a better understanding of the molecular landscape, and important subgroups therein, of this disease. METHODS: We select all vestibular schwannomas from our tumour bank with both methylation and RNA profiling available. Unsupervised clustering methods were used to define two distinct molecular subgroups of VS which were explored using computational techniques including bulk deconvolution analysis, gene pathway enrichment analysis, and drug repurposing analysis. Methylation data from two other cohorts were used to validate our findings, given a paucity of external samples with available multi-omic data. RESULTS: A total of 75 tumours were analyzed. Consensus clustering and similarity network fusion defined two subgroups ("immunogenic" and "proliferative") with significant differences in immune, stroma, and tumour cell abundance (p < 0.05). Gene network analysis and computational drug repurposing found critical differences in targets of immune checkpoint inhibition PD-1 and CTLA-4, the MEK pathway, and the epithelial to mesenchymal transition program, suggesting a need for subgroup-specific targeted treatment/trial design in the future. CONCLUSIONS: We leverage computational tools with multi-omic molecular data to define two robust subgroups of vestibular schwannoma with differences in microenvironment and therapeutic vulnerabilities.


Assuntos
Neuroma Acústico , Humanos , Neuroma Acústico/genética , Neuroma Acústico/patologia , Transição Epitelial-Mesenquimal , Microambiente Tumoral
13.
J Neurooncol ; 161(2): 405-414, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36840836

RESUMO

PURPOSE: Meningiomas are the most common primary brain tumor in adults. Traditionally they have been understudied compared to other central nervous system (CNS) tumors. However over the last decade, there has been renewed interest in uncovering the molecular topography of these tumors, with landmark studies identifying key driver alterations contributing to meningioma development and progression. Recent work from several independent research groups have integrated different genomic and epigenomic platforms to develop a molecular-based classification scheme for meningiomas that could supersede histopathological grading in terms of diagnostic accuracy, biological relevance, and outcome prediction, keeping pace with contemporary grading schemes for other CNS tumors including gliomas and medulloblastomas. METHODS: Here we summarize the studies that have uncovered key alterations in meningiomas which builds towards the discovery of consensus molecular groups in meningiomas by integrating these findings. These groups supersede WHO grade and other clinical factors in being able to accurately predict tumor biology and clinical outcomes following surgery. RESULTS: Despite differences in the nomenclature of recently uncovered molecular groups across different studies, the biological similarities between these groups enables us to likely reconciliate these groups into four consensus molecular groups: two benign groups largely dichotomized by NF2-status, and two clinically aggressive groups defined by their hypermetabolic transcriptome, and by their preponderance of proliferative, cell-cycling pathways respectively. CONCLUSION: Future work, including by our group and others are underway to validate these molecular groups and harmonize the nomenclature for routine clinical use.


Assuntos
Neoplasias do Sistema Nervoso Central , Neoplasias Cerebelares , Neoplasias Meníngeas , Meningioma , Adulto , Humanos , Meningioma/patologia , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/terapia , Multiômica
14.
J Neurooncol ; 161(2): 317-327, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36525165

RESUMO

INTRODUCTION: Few studies have evaluated meningioma patients' longer-term health-related quality of life (HRQoL) following diagnosis and treatment, particularly in those with incidental, actively monitored tumours. METHODS: A single-center, cross-sectional study was completed. Adult patients with surgically managed or actively monitored meningioma with more than five years of follow-up were included. The patient-reported outcome measures RAND SF-36, EORTC QLQ-C30 and QLQ-BN20 were used to evaluate HRQoL. HRQoL scores were compared to normative population data. Outcome determinants were evaluated using multivariate linear regression analysis. RESULTS: 243 patient responses were analyzed, and the mean time from diagnosis was 9.8 years (range 5.0-40.3 years). Clinically relevant, statistically significant HRQoL impairments were identified across several SF-36 and QLQ-C30 domains. Increasing education level (ß = 2.9, 95% CI 0.9 to 4.9), P = .004), employment (ß = 7.7, 95% CI 2.2 to 13.1, P = .006) and absence of postoperative complications (ß=-6.7, 95% CI -13.2 to (-)0.3, P = .041) were associated with a better QLQ-C30 summary score. Other tumour and treatment variables were not. CONCLUSION: This study highlights the longer-term disease burden of patients with meningioma nearly one decade after diagnosis or surgery. Patients with actively monitored meningioma have similar HRQoL to operated meningioma patients. Healthcare professionals should be mindful of HRQoL impairments and direct patients to sources of support as needed.


Assuntos
Neoplasias Meníngeas , Meningioma , Adulto , Humanos , Qualidade de Vida , Estudos Transversais , Meningioma/cirurgia , Neoplasias Meníngeas/cirurgia , Estudos de Coortes , Inquéritos e Questionários
15.
Adv Exp Med Biol ; 1416: 159-173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37432626

RESUMO

While the majority of meningiomas encountered clinically are sporadic, there is a rare subset that arises due to early life or childhood irradiation. Sources of this radiation exposure may be due to treatment of other cancers such as acute childhood leukemia, other central nervous system tumors such as medulloblastoma, the treatment of tinea capitis (rarely and historically), or environmental exposures, as seen in some of the Hiroshima and Nagasaki atomic bomb survivors. Regardless of their etiology, however, radiation-induced meningiomas (RIMs) tend to be highly biologically aggressive irrespective of WHO grade and are usually refractory to the conventional treatment modalities of surgery and/or radiotherapy. In this chapter, we will discuss these RIMs in their historical context, their clinical presentation, their genomic features and ongoing efforts to better understand these tumors from a biological standpoint in order to develop better, more efficacious therapies for these patients.


Assuntos
Neoplasias Cerebelares , Leucemia , Meduloblastoma , Meningioma , Neoplasias Induzidas por Radiação , Humanos , Criança , Meningioma/etiologia , Neoplasias Induzidas por Radiação/epidemiologia
16.
Adv Exp Med Biol ; 1416: 79-94, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37432621

RESUMO

In a previous chapter, the surgical management of skull base meningiomas were discussed. However, the most common meningiomas that are diagnosed and operated on are non-skull base tumors located in the parasagittal/parafalcine region and convexity, and more rarely along the tentorium, and in an intraventricular location. These tumors present their own unique set of challenges given their unique anatomy and tend to be more biologically aggressive compared to skull base meningiomas, thereby reinforcing the importance of obtaining a gross total resection if possible, in order to delay recurrence. In this chapter we will cover the surgical management of non-skull base meningiomas with technical considerations for tumors located in each of the anatomical areas listed above.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/cirurgia , Agressão , Neoplasias Meníngeas/cirurgia
17.
Adv Exp Med Biol ; 1416: 137-158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37432625

RESUMO

Despite being the most common primary brain tumor in adults, until recently, the genomics of meningiomas have remained quite understudied. In this chapter we will discuss the early cytogenetic and mutational changes uncovered in meningiomas, from the discovery of the loss of chromosome 22q and the neurofibromatosis-2 (NF2) gene to other non-NF2 driver mutations (KLF4, TRAF7, AKT1, SMO, etc.) discovered using next generation sequencing. We discuss each of these alterations in the context of their clinical significance and conclude the chapter by reviewing recent multiomic studies that have integrated our knowledge of these alterations together to develop novel molecular classifications for meningiomas.


Assuntos
Neoplasias Meníngeas , Meningioma , Adulto , Humanos , Meningioma/genética , Genômica , Relevância Clínica , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Meníngeas/genética
18.
Adv Exp Med Biol ; 1416: 175-188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37432627

RESUMO

Epigenetic changes have been found to be increasingly important in tumor development and progression. These alterations can be present in tumors such as meningiomas in the absence of any gene mutations and alter gene expression without affecting the sequence of the DNA itself. Some examples of these alterations that have been studied in meningiomas include DNA methylation, microRNA interaction, histone packaging, and chromatin restructuring. In this chapter we will describe in detail each of these mechanisms of epigenetic modification in meningiomas and their prognostic significance.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/genética , Cromatina , Metilação de DNA/genética , Epigênese Genética , Neoplasias Meníngeas/genética
19.
Adv Exp Med Biol ; 1416: 189-198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37432628

RESUMO

Though meningiomas are generally regarded as benign tumors, there is increasing awareness of a large group of meningiomas that are biologically aggressive and refractory to the current standards of care treatment modalities. Coinciding with this has been increasing recognition of the important that the immune system plays in mediating tumor growth and response to therapy. To address this point, immunotherapy has been leveraged for several other cancers such as lung, melanoma, and recently glioblastoma in the context of clinical trials. However, first deciphering the immune composition of meningiomas is essential in order to determine the feasibility of similar therapies for these tumors. Here in this chapter, we review recent updates on characterizing the immune microenvironment of meningiomas and identify potential immunological targets that hold promise for future immunotherapy trials.


Assuntos
Glioblastoma , Melanoma , Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/terapia , Imunoterapia , Neoplasias Meníngeas/terapia , Microambiente Tumoral
20.
Dev Biol ; 472: 30-37, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33444612

RESUMO

Zebrafish have a remarkable ability to regenerate the myocardium after injury by proliferation of pre-existing cardiomyocytes. Fibroblast growth factor (FGF) signaling is known to play a critical role in zebrafish heart regeneration through promotion of neovascularization of the regenerating myocardium. Here, we define an additional function of FGF signaling in the zebrafish myocardium after injury. We find that FGF signaling is active in a small fraction of cardiomyocytes before injury, and that the number of FGF signaling-positive cardiomyocytes increases after amputation-induced injury. We show that ERK phosphorylation is prominent in endothelial cells, but not in cardiomyocytes. In contrast, basal levels of phospho-AKT positive cardiomyocytes are detected before injury, and the ratio of phosphorylated AKT-positive cardiomyocytes increases after injury, indicating a role of AKT signaling in cardiomyocytes following injury. Inhibition of FGF signaling reduced the number of phosphorylated AKT-positive cardiomyocytes and increased cardiomyocyte death without injury. Heart injury did not induce cardiomyocyte death; however, heart injury in combination with inhibition of FGF signaling caused significant increase in cardiomyocyte death. Pharmacological inhibition of AKT signaling after heart injury also caused increased cardiomyocyte death. Our data support the idea that FGF-AKT signaling-dependent cardiomyocyte survival is necessary for subsequent heart regeneration.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração/genética , Transdução de Sinais/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cromonas/farmacologia , Fatores de Crescimento de Fibroblastos/genética , Traumatismos Cardíacos/metabolismo , Morfolinas/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Regeneração/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA