Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2401153, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501763

RESUMO

Lithium-sulfur batteries are recognized as the next generation of high-specific energy secondary batteries owing to their satisfactory theoretical specific capacity and energy density. However, their commercial application is greatly limited by a series of problems, including disordered migration behavior, sluggish redox kinetics, and the serious shuttle effect of lithium polysulfides. One of the most efficient approaches to physically limit the shuttle effect is the rational design of a hollow framework as sulfur host. However, the influence of the hollow structure on the interlayers has not been clearly reported. In this study, the Mo2 C/C catalysts with hollow(H-Mo2 C/C) and solid(S-Mo2 C/C) frameworks are rationally designed to explore the dependence of the hollow structure on the interlayer or sulfur host. In contrast to the physical limitations of the hollow framework as host, the hollow structure of the interlayer inhibited lithium-ion diffusion, resulting in poor electrochemical properties at high current densities. Based on the superiority of the various frameworks, the H-Mo2 C/C@S | S-Mo2 C/C@PP | Li cells are assembled and displayed excellent electrochemical performance. This work re-examines the design requirements and principles of catalyst frameworks in different battery units.

2.
Langmuir ; 40(23): 12097-12106, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38814133

RESUMO

Antimony sulfide (Sb2S3) has been recognized as a catalytic material for splitting water by solar energy because of its suitable narrow band gap, high absorption coefficient, and abundance of elements. However, many deep-level defects in Sb2S3 result in a significant recombination of photoexcited electron-hole pairs, weakening its photoelectrochemical performance. Here, by using a simple hydrothermal and spin-coating method, we fabricated a step-scheme heterojunction of Sb2S3/α-Fe2O3 to improve the photoelectrochemical performance of pure Sb2S3. Our Sb2S3/α-Fe2O3 photoanode has a photocurrent density of 1.18 mA/cm2 at 1.23 V vs reversible hydrogen electrode, 1.39 times higher than that of Sb2S3 (0.84 mA/cm2). In addition, our heterojunction has a lower onset potential, a higher absorbance intensity, a higher incident photon-to-current conversion efficiency, a higher applied bias photon-to-current efficiency, and a lower charge transfer resistance compared to pure Sb2S3. Based on ultraviolet photoelectron spectroscopy, we constructed a step-scheme band structure of Sb2S3/α-Fe2O3 to explain its photoelectrochemical enhancement. This work offers a promising strategy to optimize the performance of Sb2S3 photoelectrodes for solar-driven photoelectrochemical water splitting.

3.
Appl Opt ; 63(12): 3250-3259, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38856474

RESUMO

We have developed and experimentally investigated a long-range 1.645 µm coherent Doppler wind lidar (CDWL) system. A compact 1.645 µm single-frequency Er:YAG laser is utilized as the laser transmitter. The impact of laser transmitter parameters on wind detection was assessed using the figure of merit (FOM) concept. To enhance the measurement efficiency, the influence of wave aberrations on the heterodyne efficiency was analyzed. A Galilean telescope with an optical aperture of 100 mm is designed as the optical antenna based on the analysis. The line of sight (LOS) detection range exceeds 30.42 km with a data rate of 1 Hz at an elevation angle of 3.5°. To evaluate the effectiveness of the CDWL, comparison experiments were conducted between the 1.645 µm CDWL and a calibrated 1.55 µm CDWL, revealing a correlation coefficient of 0.9816 for the whole detection path in the wind velocity measurement.

4.
BMC Geriatr ; 24(1): 541, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907227

RESUMO

BACKGROUND: Emerging evidence suggests that alterations in BCAA metabolism may contribute to the pathogenesis of sarcopenia. However, the relationship between branched-chain amino acids (BCAAs) and sarcopenia is incompletely understood, and existing literature presents conflicting results. In this study, we conducted a community-based study involving > 100,000 United Kingdom adults to comprehensively explore the association between BCAAs and sarcopenia, and assess the potential role of muscle mass in mediating the relationship between BCAAs and muscle strength. METHODS: Multivariable linear regression analysis examined the relationship between circulating BCAAs and muscle mass/strength. Logistic regression analysis assessed the impact of circulating BCAAs and quartiles of BCAAs on sarcopenia risk. Subgroup analyses explored the variations in associations across age, and gender. Mediation analysis investigated the potential mediating effect of muscle mass on the BCAA-muscle strength relationship. RESULTS: Among 108,017 participants (mean age: 56.40 ± 8.09 years; 46.23% men), positive associations were observed between total BCAA, isoleucine, leucine, valine, and muscle mass (beta, 0.56-2.53; p < 0.05) and between total BCAA, leucine, valine, and muscle strength (beta, 0.91-3.44; p < 0.05). Logistic regression analysis revealed that increased circulating valine was associated with a 47% reduced sarcopenia risk (odds ratio = 0.53; 95% confidence interval = 0.3-0.94; p = 0.029). Subgroup analyses demonstrated strong associations between circulating BCAAs and muscle mass/strength in men and individuals aged ≥ 60 years. Mediation analysis suggested that muscle mass completely mediated the relationship between total BCAA, and valine levels and muscle strength, partially mediated the relationship between leucine levels and muscle strength, obscuring the true effect of isoleucine on muscle strength. CONCLUSION: This study suggested the potential benefits of BCAAs in preserving muscle mass/strength and highlighted muscle mass might be mediator of BCAA-muscle strength association. Our findings contribute new evidence for the clinical prevention and treatment of sarcopenia and related conditions involving muscle mass/strength loss.


Assuntos
Aminoácidos de Cadeia Ramificada , Força Muscular , Sarcopenia , Humanos , Sarcopenia/sangue , Sarcopenia/epidemiologia , Masculino , Feminino , Estudos Transversais , Aminoácidos de Cadeia Ramificada/sangue , Pessoa de Meia-Idade , Força Muscular/fisiologia , Idoso , Reino Unido/epidemiologia , Músculo Esquelético/metabolismo , Adulto
5.
Small ; 19(8): e2206287, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36504264

RESUMO

The α-Ni(OH)2 is regarded as one promising cathode for aqueous nickel-zinc batteries due to its high theoretical capacity of ≈480 mAh g-1 , its practical deployment however suffers from the poor stability in strong alkaline solution, intrinsic low electrical conductivity as well as the retarded ionic diffusion. Herein, a 3D (three dimensional) macroporous α-Ni(OH)2 nanosheets with Co doping is designed through a facile and easily scalable electroless plating combined with electrodeposition strategy. The unique micrometer-sized 3D pores come from Ni substrate and rich voids between Co-doping α-Ni(OH)2 nanosheets can synergistically afford facile, interconnected ionic diffusion channels, sufficient free space for accommodating its volume changes during cycling; meanwhile, the Co-doping can stabilize the structural robustness of the α-Ni(OH)2 in the alkaline electrolyte during cycling. Thus, the 3D α-Ni(OH)2 shows a high capacity of 284 mAh g-1 at 0.5 mA cm-2 with an excellent retention of 78% even at 15 mA cm-2 , and more than 2000 stable cycles at 6 mA cm-2 , as well as the robust cycling upon various flexible batteries. This work provides a simple and efficient pathway to enhance the electrochemical performance of Ni-Zn batteries through improving ionic transport kinetics and stabilizing crystal structure of cathodes.

6.
Opt Express ; 31(21): 35305-35312, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859265

RESUMO

1.6 µm high-order vortex modes carrying orbital angular momentums (OAMs) play significant roles in long-range Doppler lidars and other remote sensing. Amplification of 1.6 µm high-order vortex modes is an important way to provide high-power laser sources for such lidars and also enable the weak echo signal to be amplified so that it can be analyzed. In this work, we propose a four-pass Er:YAG vortex master-oscillator-power-amplification (MOPA) system to amplify 1.6 µm high-order vortex modes. In the proof-of-concept experiments, 1.6 µm single OAM mode (l = 3) is amplified successfully and the gain ranging from 1.88 to 2.36 is achieved. Multiplexed OAM mode (l=±3) is also amplified with favorable results. This work addresses the issue as the low gain of Er:YAG vortex MOPA, which provides a feasible path for 1.6 µm high-order vortex modes amplification.

7.
Opt Lett ; 48(2): 331-334, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638450

RESUMO

A 1645-nm single-frequency vortex beam with narrow linewidth from an Er:YAG nonplanar ring oscillator (NPRO) using an annular pump beam is demonstrated. The pump beam from a 1532-nm fiber laser is shaped to an annular beam by an axicon. The Er:YAG NPRO generates a 1.96-W single-frequency vortex beam under a pump power of 13 W. The linewidth of the 1645-nm vortex laser is measured as 6 kHz. This work provides a convenient way of single-frequency vortex beam generation.

8.
Inflamm Res ; 72(8): 1551-1565, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37433890

RESUMO

BACKGROUND: The purpose of this study was to study the effect of STING-IFN-I pathway on incision induced postoperative pain in rats and its possible mechanisms. METHODS: The pain thresholds were evaluated by measuring the mechanical withdrawal threshold and the thermal withdrawal latency. The satellite glial cell and macrophage of DRG were analyzed. The expression of STING, IFN-a, P-P65, iNOS, TNF-α, IL-1ß and IL-6 in DRG was evaluated. RESULTS: The activation of STING-IFN-I pathway can reduce the mechanical hyperalgesia, thermal hyperalgesia, down-regulate the expression of P-P65, iNOS, TNF-α, IL-1ß and IL-6, and inhibit the activation of satellite glial cell and macrophage in DRG. CONCLUSIONS: The activation of STING-IFN-I pathway can alleviate incision induced acute postoperative pain by inhibiting the activation of satellite glial cell and macrophage, which reducing the corresponding neuroinflammation in DRG.


Assuntos
Gânglios Espinais , Fator de Necrose Tumoral alfa , Ratos , Animais , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Doenças Neuroinflamatórias , Hiperalgesia/metabolismo , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/metabolismo
9.
J Pineal Res ; 74(3): e12858, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36732033

RESUMO

Increasing carbon dioxide (CO2 ) promotes photosynthesis and mitigates heat stress-induced deleterious effects on plants, but the regulatory mechanisms remain largely unknown. Here, we found that tomato (Solanum lycopersicum L.) plants treated with high atmospheric CO2 concentrations (600, 800, and 1000 µmol mol-1 ) accumulated increased levels of melatonin (N-acetyl-5-methoxy tryptamine) in their leaves and this response is conserved across many plant species, including Arabidopsis, rice, wheat, mustard, cucumber, watermelon, melon, and hot pepper. Elevated CO2 (eCO2 ; 800 µmol mol-1 ) caused a 6.8-fold increase in leaf melatonin content, and eCO2 -induced melatonin biosynthesis preferentially occurred through chloroplast biosynthetic pathways in tomato plants. Crucially, manipulation of endogenous melatonin levels by genetic means affected the eCO2 -induced accumulation of sugar and starch in tomato leaves. Furthermore, net photosynthetic rate, maximum photochemical efficiency of photosystem II, and transcript levels of chloroplast- and nuclear-encoded photosynthetic genes, such as rbcL, rbcS, rbcA, psaD, petB, and atpA, significantly increased in COMT1 overexpressing (COMT1-OE) tomato plants, but not in melatonin-deficient comt1 mutants at eCO2 conditions. While eCO2 enhanced plant tolerance to heat stress (42°C) in wild-type and COMT1-OE, melatonin deficiency compromised eCO2 -induced thermotolerance in comt1 plants. The expression of heat shock proteins genes increased in COMT1-OE but not in comt1 plants in response to eCO2 under heat stress. Further analysis revealed that eCO2 -induced thermotolerance was closely linked to the melatonin-dependent regulation of reactive oxygen species, redox homeostasis, cellular protein protection, and phytohormone metabolism. This study unveiled a crucial mechanism of elevated CO2 -induced thermotolerance in which melatonin acts as an essential endogenous signaling molecule in tomato plants.


Assuntos
Melatonina , Solanum lycopersicum , Termotolerância , Dióxido de Carbono/metabolismo , Fotossíntese
10.
BMC Oral Health ; 23(1): 820, 2023 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-37899429

RESUMO

OBJECTIVE: This study aims to assess the short- and long-term changes in the upper airway and alar width after mini-implant -assisted rapid palatal expansion (MARPE) in nongrowing patients. METHODS: Five electronic databases (PubMed, Scopus, Embase, Web of Science, and Cochrane Library) were searched up to 2 August, 2023 based on the PICOS principles. The main outcomes were classified into three groups: 1) nasal cavity changes, 2) upper airway changes and 3) alar changes. The mean difference (MD) and 95% confidence intervals (CI) were used to assess these changes. Heterogeneity tests, subgroup analyses, sensitivity analyses, and publication bias were also analyzed. RESULT: Overall, 22 articles were included for data analysis. Nasal cavity width (WMD: 2.05 mm; 95% CI: 1.10, 3.00) and nasal floor width (WMD: 2.13 mm; 95% CI: 1.16, 3.11) increased significantly. While palatopharyngeal volume (WMD: 0.29 cm3, 95% CI: -0.44, 1.01), glossopharyngeal volume (WMD: 0.30 cm3, 95% CI: -0.29, 0.89) and hypopharyngeal volume (WMD: -0.90 cm3; 95% CI: -1.86, 0.06) remained unchanged, nasal cavity volume (WMD: 1.24 cm3, 95% CI: 0.68, 1.81), nasopharyngeal volume (MD: 0.75 cm3, 95% CI: 0.44, 1.06), oropharyngeal volume (WMD: 0.61 cm3, 95% CI: 0.35, 0.87), and total volume of the upper airway (WMD: 1.67 cm3, 95% CI: 0.68, 2.66) increased significantly. Alar width (WMD: 1.47 mm; 95% CI: 0.40, 2.55) and alar base width (WMD: 1.54 mm; 95% CI: 1.21, 1.87) also increased. CONCLUSION: MARPE can increase nasal cavity width, nasal cavity volume, nasopharyngeal volume and oropharyngeal volume for nongrowing patients, but has no significant effect on hypopharyngeal volume. In addition, the alar width also increased. However, the studies included in this meta-analysis were mainly retrospective, nonrandomized and small in number, so the findings should be interpreted with caution and high-quality RCTs need to be studied.


Assuntos
Implantes Dentários , Técnica de Expansão Palatina , Humanos , Estudos Retrospectivos , Técnica de Expansão Palatina/efeitos adversos , Nariz , Cavidade Nasal , Maxila , Tomografia Computadorizada de Feixe Cônico
11.
Neurobiol Dis ; 174: 105890, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36220611

RESUMO

The dysregulation of neuronal networks contributes to the etiology of psychiatric diseases, including anxiety. However, the neural circuits underlying anxiety symptoms remain unidentified. We observed acute restraint stress activating excitatory neurons in the paraventricular thalamus (PVT). Activation of PVT neurons caused anxious behaviors, whereas suppression of PVT neuronal activity induced an anxiolytic effect, achieved by using a chemogenetic method. Moreover, we found that the PVT neurons showed plentiful neuronal projections to the bed nucleus of the stria terminalis (BNST). Activation of PVT-BNST neural projections increased the susceptibility of stress-induced anxiety-related behaviors, and inhibition of this neural circuit produced anxiolysis. The insular cortex (IC) is an important upstream region projecting to PVT. Activation of IC-PVT neuronal projections enhanced susceptibility to stress induced anxious behaviors. Inhibiting this neural circuit suppressed anxious behaviors. Moreover, anterograde monosynaptic tracing results showed that the IC exerts strong neuronal projections to PVT, forming synaptic connections with its neurons, and these neurons throw extensive neuronal fibers to form synapse with BNST neurons. Finally, our results showed that ablation of neurons in PVT receiving monosynaptic input from IC attenuated the anxiety-related phenotypes induced by activating IC neurons. Lesions of the neurons in BNST synaptic origination from PVT blocked the anxiety-related phenotypes induced by activating PVT neurons. Our findings indicate that the PVT is a crucial anxiety-regulating nucleus, and the IC-PVT-BNST neural projection is an essential pathway affecting anxiety morbidity and treatment.


Assuntos
Núcleos Septais , Núcleos Septais/fisiologia , Córtex Insular , Tálamo , Ansiedade , Neurônios , Vias Neurais/fisiologia
12.
Opt Express ; 30(14): 25774-25787, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237100

RESUMO

Coherent Doppler wind lidar (CDWL) is used to measure wind velocity distribution by using laser pulses. However, the echo signal is easily affected by atmospheric turbulence, which could decrease the effective detection range of CDWL. In this paper, a variation modal decomposition based on honey badger algorithm (VMD-HBA) is proposed and demonstrated. Compared with conventional VMD-based methods, the proposed method utilizes a newly developed HBA to obtain the optimal VMD parameters by iterating the spectrum fitness function. In addition, the Correlation Euclidean distance is applied to identify the relevant mode and used to reconstruct the signal. The simulation results show that the denoising performance of VMD-HBA is superior to other available denoising methods. Experimentally, this combined method was successfully realized to process the actual lidar echo signal. Under harsh detection conditions, the effective detection range of the homemade CDWL system is extended from 13.41 km to 20.61 km.

13.
J Exp Bot ; 73(17): 5928-5946, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35640564

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) is an indole molecule widely found in animals and plants. It is well known that melatonin improves plant resistance to various biotic and abiotic stresses due to its potent free radical scavenging ability while being able to modulate plant signaling and response pathways through mostly unknown mechanisms. In recent years, an increasing number of studies have shown that melatonin plays a crucial role in improving crop quality and yield by participating in the regulation of various aspects of plant growth and development. Here, we review the effects of melatonin on plant vegetative growth and reproductive development, and systematically summarize its molecular regulatory network. Moreover, the effective concentrations of exogenously applied melatonin in different crops or at different growth stages of the same crop are analysed. In addition, we compare endogenous phytomelatonin concentrations in various crops and different organs, and evaluate a potential function of phytomelatonin in plant circadian rhythms. The prospects of different approaches in regulating crop yield and quality through exogenous application of appropriate concentrations of melatonin, endogenous modification of phytomelatonin metabolism-related genes, and the use of nanomaterials and other technologies to improve melatonin utilization efficiency are also discussed.


Assuntos
Melatonina , 5-Metoxitriptamina , Animais , Produtos Agrícolas/metabolismo , Radicais Livres , Melatonina/metabolismo , Fenômenos Fisiológicos Vegetais
14.
J Pineal Res ; 72(3): e12792, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35174545

RESUMO

Melatonin functions in multiple aspects of plant growth, development, and stress response. Nonetheless, the mechanism of melatonin in plant carbon metabolism remains largely unknown. In this study, we investigated the influence of melatonin on the degradation of starch in tomato leaves. Results showed that exogenous melatonin attenuated carbon starvation-induced chlorophyll degradation and leaf senescence. In addition, melatonin delayed leaf starch degradation and inhibited the transcription of starch-degrading enzymes after sunset. Interestingly, melatonin-alleviated symptoms of leaf senescence and starch degradation were compromised when the first key gene for starch degradation, α-glucan water dikinase (GWD), was overexpressed. Furthermore, exogenous melatonin significantly upregulated the transcript levels of several microRNAs, including miR171b. Crucially, the GWD gene was identified as a target of miR171b, and the overexpression of miR171b ameliorated the carbon starvation-induced degradation of chlorophyll and starch, and inhibited the expression of the GWD gene. Taken together, these results demonstrate that melatonin promotes plant tolerance against carbon starvation by upregulating the expression of miR171b, which can directly inhibit GWD expression in tomato leaves.


Assuntos
Melatonina , Solanum lycopersicum , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Folhas de Planta/metabolismo , Senescência Vegetal
15.
Acta Pharmacol Sin ; 43(11): 2841-2847, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35468993

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the pervasive side effects of chemotherapy, leading to poor quality of life in cancer patients. Discovery of powerful analgesics for CIPN is an urgent and substantial clinical need. Nerve growth factor (NGF), a classic neurotrophic factor, has been identified as a potential therapeutic target for pain. In this study, we generated a humanized NGF monoclonal antibody (DS002) that most effectively blocked the interaction between NGF and tropomyosin receptor kinase A (TrkA). We showed that DS002 blocked NGF binding to TrkA in a dose-dependent manner with an IC50 value of 6.6 nM; DS002 dose-dependently inhibited the proliferation of TF-1 cells by blocking the TrkA-mediated downstream signaling pathway. Furthermore, DS002 did not display noticeable species differences in its binding and blocking abilities. In three chemotherapy-induced rat models of CIPN, subcutaneous injection of DS002 produced a significant prophylactic effect against paclitaxel-, cisplatin- and vincristine-induced peripheral neuropathy. In conclusion, we demonstrate for the first time that an NGF inhibitor effectively alleviates pain in animal models of CIPN. DS002 has the potential to treat CIPN pain in the clinic.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Ratos , Animais , Fator de Crescimento Neural , Anticorpos Monoclonais/uso terapêutico , Qualidade de Vida , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Dor , Antineoplásicos/efeitos adversos , Receptor trkA/metabolismo
16.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296543

RESUMO

Although a facile route to prepare AgCu nanoalloys (NAs) with enhanced antibacterial efficacy using Ag NP catalysis of Cu ions at elevated temperatures was previously developed, its detailed reaction process is still unclear due to the fast reaction process at higher temperatures. This work found that AgCu NAs can also be synthesized by the same process but at room temperature. AgCu NAs formation kinetics have been studied using UV-Visible spectra and Transmission Electron Microscopy (TEM), where formation includes Cu2+ deposition onto the Ag NP surface and Ag+ release, reduction, and agglomeration to form new Ag NPs; this is followed by a redistribution of the NA components and coalescence to form larger AgCu NPs. It is found that SPR absorption is linear with time early in the reaction, as expected for both pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetics; neither model is followed subsequently due to contributions from newly formed Ag NPs and AgCu NAs. The antibacterial efficacy of the AgCu NAs thus formed was estimated, with a continuous increase over the whole alloying process, demonstrating the correlation of antibacterial efficacy with the extent of AgCu NA formation and Ag+ release.


Assuntos
Nanopartículas Metálicas , Temperatura , Cinética , Catálise , Antibacterianos/farmacologia , Íons
17.
Molecules ; 27(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745062

RESUMO

Curcumin (CUR) has a bright future in the treatment of cancer as a natural active ingredient with great potential. However, curcumin has a low solubility, which limits its clinical application. In this study, IRMOF-10 was created by the direct addition of triethylamine, CUR was loaded into IRMOF-10 using the solvent adsorption method, and the two were characterized using a scanning electron microscope (SEM), X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG) methods, and Brunauer-Emmett-Teller (BET) analysis. We also used the MTT method, 4',6-diamidino-2-phenylindole (DAPI) staining, the annexin V/PI method, cellular uptake, reactive oxygen species (ROS), and the mitochondrial membrane potential (MMP) to perform a safety analysis and anticancer activity study of IRMOF-10 and CUR@IRMOF-10 on HepG2 cells. Our results showed that CUR@IRMOF-10 had a CUR load of 63.96%, with an obvious slow-release phenomenon. The CUR levels released under different conditions at 60 h were 33.58% (pH 7.4) and 31.86% (pH 5.5). Cell experiments proved that IRMOF-10 was biologically safe and could promote curcumin entering the nucleus, causing a series of reactions, such as an increase in reactive oxygen species and a decrease in the mitochondrial membrane potential, thereby leading to cell apoptosis. In summary, IRMOF-10 is an excellent drug carrier and CUR@IRMOF-10 is an effective anti-liver cancer sustained-release preparation.


Assuntos
Carcinoma Hepatocelular , Curcumina , Neoplasias Hepáticas , Nanopartículas , Compostos de Bifenilo , Carcinoma Hepatocelular/tratamento farmacológico , Curcumina/química , Ácidos Dicarboxílicos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/química , Espécies Reativas de Oxigênio
18.
Zhongguo Zhong Yao Za Zhi ; 47(15): 4015-4024, 2022 Aug.
Artigo em Zh | MEDLINE | ID: mdl-36046890

RESUMO

In this study, the critical quality attributes of Wuzhuyu Decoction reference sample were explored by using characteristic chromatogram, index component content and dry extract rate as indexes.The dissemination relationship of quantity value between medicinal materials-decoction pieces-reference sample was investigated to preliminarily formulate the quality standard of the reference sample.The characteristic chromatogram of 15 batches of Wuzhuyu Decoction was established by high performance liquid chromatography(HPLC) and the similarity analysis was conducted.Common peaks were demarcated and assigned to medicinal materials.Moreover, quantitative determination of limonin, evodiamine, rutaecarpine and ginsenoside Rb_1 of Wuzhuyu Decoction were performed.The dissemination of quantity value was explored combined with dry extract rate, similarity of characteristic chromatogram and transfer rate of index component content.A total of 18 common peaks were identified in the corresponding materials of Wuzhuyu Decoction reference sample, with the similarity of characteristic chromatogram greater than 0.9, and Fructus Evodiae, Radix Ginseng, Rhizoma Zingiberis Recens and Fructus Jujubae contributed 9, 5, 8 and 2 chromatographic peaks, respectively.The index component content of corresponding materials and the transfer rates of medicinal materials-decoction pieces and decoction pieces-reference sample of different batches of Wuzhuyu Decoction reference sample were as follows: the content of limonin was 0.16%-0.51%, and the transfer rates were 83.66%-115.60% and 38.54%-54.58%, respectively; the content of evodiamine was 0.01%-0.11%, the transfer rated were 80.80%-116.15% and 3.23%-12.93%, respectively; the content of rutaecarpine was 0.01%-0.05%, the transfer rates were 84.33%-134.53% and 5.72%-21.24%, respectively; the content of ginsenoside Rb_1 was 0.06%-0.11%, and the transfer rates were 90.00%-96.92% and 32.45%-67.24%, respectively.The dry extract rate of the whole prescription was 22.58%-29.89%.In this experiment, the dissemination of quantity value of Wuzhuyu Decoction reference sample was analyzed by the combination of characteristic chromatogram, index component content and dry extract rate.A scientific and stable quality evaluation method of the reference sample was preliminarily established, which provided basis for the subsequent development of Wuzhuyu Decoction and the quality control of related preparations.


Assuntos
Medicamentos de Ervas Chinesas , Ginsenosídeos , Limoninas , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Ginsenosídeos/análise , Limoninas/análise , Controle de Qualidade
19.
Opt Express ; 29(5): 6445-6452, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726165

RESUMO

A wavelength tunable single-longitudinal-mode (SLM) Er:YAG ring laser around 1.6 µm is demonstrated. By using an acousto-optic modulator (AOM) to force unidirectional operation, up to 10.4 W and 8.7 W SLM laser output power are obtained at 1645.22 nm and 1617.33 nm, with corresponding slope efficiencies of 45% and 40%, respectively. Besides, stable dual-wavelength operation at both 1645 nm and 1617 nm is also achieved with the maximum power of 9.1 W. By rotating the birefringent filter (BRF) in the ring cavity, the wavelength could be tuned from 1616.77 nm to 1617.51 nm and 1644.51 nm to 1646.12 nm. The line width is measured to be 125 kHz at 1617 nm and 131 kHz at 1645 nm via the time-delayed self-heterodyne method. As far as we know, 8.7 W is the highest continuous-wave SLM output power at 1617 nm.

20.
Appl Opt ; 60(34): 10721-10726, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35200938

RESUMO

A denoising method based on singular value decomposition (SVD) and variational mode decomposition (VMD) is proposed for wind lidar. Utilizing the covariance matrix based lidar signal simulation model, the performance of VMD, SVD, and VMD-SVD is evaluated. The results show that the VMD-SVD method is of better performance, and the output signal-to-noise ratio (SNR) is about 12 dB at the input SNR of -9dB. The actual lidar signals processing is performed with this combined denoising method, and the detection range and wind speed at pulse accumulation numbers of 50,100, and 300 are compared. We set the wind speed resulting from noisy signal with pulse accumulation number of 300 as the reference wind speed, and the mean value and standard deviation of wind differences are analyzed. The results show that the denoising method can not only increase the detection range while ensuring the accuracy of wind speed estimation but also achieve the same detection distance with fewer pulse accumulations, thereby improving the temporal resolution. For the pulse accumulation number of 50, the detection range is extended to 24 km from 18.45 km, and the standard deviation of speed difference is 0.88 m/s; for the same detection range, the temporal resolution is increased by about 6 times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA