Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Am J Med Genet C Semin Med Genet ; 181(4): 693-708, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31469230

RESUMO

Beckwith-Wiedemann syndrome (BWS) is the most common epigenetic overgrowth and cancer predisposition disorder. Due to both varying molecular defects involving chromosome 11p15 and tissue mosaicism, patients can present with a variety of clinical features, leading to the newly defined Beckwith-Wiedemann spectrum (BWSp). The BWSp can be further divided into three subsets of patients: those presenting with classic features, those presenting with isolated lateralized overgrowth (ILO) and those not fitting into the previous two categories, termed atypical BWSp. Previous reports of patients with BWS have focused on those with the more recognizable, classic features, and limited information is available on those who fit into the atypical and ILO categories. Here, we present the first cohort of patients recruited across the entire BWSp, describe clinical features and molecular diagnostic characteristics, and provide insight into practical diagnosis and management recommendations that we have gained from this cohort.


Assuntos
Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/terapia , Síndrome de Beckwith-Wiedemann/genética , Metilação de DNA , Feminino , Genótipo , Humanos , Lactente , Masculino , Fenótipo
2.
Front Pediatr ; 7: 562, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32039119

RESUMO

Beckwith-Wiedemann syndrome (BWS) is a human genomic imprinting disorder that presents with a wide spectrum of clinical features including overgrowth, abdominal wall defects, macroglossia, neonatal hypoglycemia, and predisposition to embryonal tumors. It is associated with genetic and epigenetic changes on the chromosome 11p15 region, which includes two imprinting control regions. Here we review strategies for diagnosing and managing BWS and delineate commonly used genetic tests to establish a molecular diagnosis of BWS. Recommended first-line testing assesses DNA methylation and copy number variation of the BWS region. Tissue mosaicism can occur in patients with BWS, posing a challenge for genetic testing, and a negative test result does not exclude a diagnosis of BWS. Further testing should analyze additional tissue samples or employ techniques with higher diagnostic yield. Identifying the BWS molecular subtype is valuable for coordinating patient care because of the (epi)genotype-phenotype correlations, including different risks and types of embryonal tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA