Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biopharm Drug Dispos ; 43(1): 11-22, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34914109

RESUMO

Xanthohumol, a natural isoflavone from Humulus lupulus L., possesses biological activities. However, the biological fate of xanthohumol in vivo remains unclear. The aim of this study was to investigate the absorption and metabolism of xanthohumol in rats through UPLC-MS/MS. The plasma, urine and fecal samples were collected after oral administration of xanthohumol (25, 50, 100 mg/kg) in SD rats. The contents of xanthohumol and its metabolites were determined by UPLC-MS/MS. A total of 6 metabolites of xanthohumol were identified in rats, including methylated, glucuronidated, acid-catalyzed cyclization and oxidation, indicating xanthohumol underwent phase I and II metabolism. Besides, isoxanthohumol was the major metabolites of xanthohumol. Xanthohumol was rapidly absorbed, metabolized, and eliminated in rats. The pharmacokinetics results showed the Tmax of xanthohumol and isoxanthohumol were 3 and 2.33 h, respectively. The AUC0-t of xanthohumol and isoxanthohumol were 138.83 ± 6.03 and 38.77 ± 4.46 ng/ml·h, respectively. Furthermore, xanthohumol was mainly excreted in the form of prototype through feces and a small amount of xanthohumol was excreted through urine. These results illustrated the absorption, metabolism, and pharmacokinetics process of xanthohumol in rats, and provided a reference for the further rational applications.


Assuntos
Flavonoides , Propiofenonas , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Flavonoides/metabolismo , Flavonoides/farmacocinética , Propiofenonas/metabolismo , Propiofenonas/farmacocinética , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
2.
Zhong Yao Cai ; 38(12): 2459-63, 2015 Dec.
Artigo em Zh | MEDLINE | ID: mdl-27352525

RESUMO

OBJECTIVE: To optimize and determine the artificial cultivated conditions of Phellinus igniarius by Response Surface Method. METHODS: With the index for the content of hypholomine B which was the main component of alcohol extract of Phellinus igniarius, the effect factors such as cultivated temperature, humidity, substrate types and illumination time were investigated respectively. By univariate analysis of variance, three most influential factors designed by BBD ( Box-Behnken Design) response surface optimization were selected to determine the optimal combination of them. RESULTS: Cultivated temperature, humidity and substrate types were the most significant factors, the influence order was as follows: cultivated temperature > humidity > substrate types. The optimal artificial cultivated conditions of Phellinus igniarius were as follows: cultivated temperature 35 degress C, humidity 95%, and substrates for wheat. Under the conditions, the average content of hypholomine B was 1.046%. CONCLUSION: Response Surface Method can be used for optimization of artificial cultivated conditions of Phellinus igniarius,which provides an experimental method for the optimization of cultivated conditions of medicinal resources.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Produtos Biológicos/química , Micologia/métodos , Basidiomycota/química , Umidade , Temperatura
3.
J Ethnopharmacol ; 302(Pt A): 115898, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36372193

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fructus Ligustri Lucidi (FLL), the fruit of Ligustrum lucidum Ait., is a traditional Chinese medicine that has been used for tonifying the kidney and liver for decades. AIM OF THE STUDY: This study aimed to explore and identify polysaccharides from FLL and elucidate its protective effect against renal fibrosis. MATERIALS AND METHODS: Polysaccharides were extracted and isolated from FLL. The purified fraction was identified by serial phytochemical work, such as gel-permeation chromatography, ion chromatography, gas chromatography-mass spectrometry, and nuclear magnetic resonance. Mice with unilateral ureteral obstruction (UUO) were applied as a renal fibrosis model. The male UUO mice were pretreated with heteropolysaccharide (Poly) 1 week prior to surgery and continuously treated for 7 days after the operation. Renal fibrosis was assessed by Periodic Acid-Schiff (PAS) staining and Masson's trichrome staining in paraffin-embedded slides. The murine mesangial cells SV40-MES13 upon angiotensin II (Ang II) treatment were developed as an in vitro fibrotic model. The cells were treated by Poly in the presence of Ang II. Molecular expression was detected by RT-PCR, immunoblotting, and immunofluorescence staining. RESULTS: We identified a heteropolysaccharide composed of arabinose and galactose (molar ratio, 0.73:0.27) with a predicted chemical structure characterized by a backbone composed of 1,5-α-Araf, 1,3,5-α-Araf, 1,6-α-Galp, and 1,3,6-ß-Galp and side chains comprised of T-α-Araf, T-α-Arap, and 1,3-α-Araf. Pretreatment of UUO mice with Poly effectively alleviated glomerulosclerosis and tubulointerstitial fibrosis. Moreover, Poly pretreatment down-regulated the expression of extracellular matrix (ECM) protein fibronectin (FN), profibrotic factor VEGF, proinflammatory cytokines MCP-1 and Rantes in the obstructed kidney. Similarly, the incubation of SV40-MES13 cells with Poly significantly inhibited Ang II-induced elevation in accumulation and expression level of FN and attenuated Ang II-evoked up-regulation in protein expression of MCP-1 and Rantes. CONCLUSIONS: Our study isolated and identified a naturally occurring heteropolysaccharide in FLL and revealed its potential in protecting the kidneys from fibrosis.


Assuntos
Nefropatias , Ligustrum , Obstrução Ureteral , Masculino , Camundongos , Animais , Ligustrum/química , Quimiocina CCL5/metabolismo , Fibrose , Nefropatias/tratamento farmacológico , Rim , Obstrução Ureteral/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Angiotensina II/metabolismo
4.
Phytomedicine ; 98: 153982, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35168092

RESUMO

BACKGROUND: Our early studies performed on aged rats, ovariectomized (OVX) rats and diabetic mice, indicated the calciotropic role of Fructus Ligustri Lucidi (FLL), the fruit of Ligustrum lucidum Ait., in mediating calcium homeostasis which was partially attributed to its stimulation on renal calcium reabsorption. PURPOSE: This study aimed to explicate the underlying molecular mechanism and explore the potential bioactive ingredients in FLL. STUDY DESIGN AND METHODS: The OVX C57BL/6 J mice were orally administered with low (FL, 75 mg/kg), middle (FM, 225 mg/kg) or high (FH, 675 mg/kg) dose of extract of Fructus Ligustri Lucidi for 10 weeks. The biological properties of trabecular bone were measured by micro-CT and H&E staining. The molecular expression was assessed by immunoblotting and immunostaining. The potential active components were identified by cell membrane chromatography (CMC) and explored in renal tubular cells with Fluo-3/AM fluorescent staining to indicate intracellular calcium level. The male mice fed with high calcium diet (1.2% Ca) and orally treated with active components for 3 weeks. RESULTS: Treatment of OVX mice with FLL extract suppressed the elevation in urinary calcium level (FH, 0.081 ± 0.012, vs. OVX, 0.189 ± 0.038 mg/mg), and increased bone mineral density (FH, 62.41 ± 2.57, vs. OVX, 43.72 ± 8.43 mg/ccm) and percentage of trabecular bone area. It also decreased circulating PTH level (FH, 66.69 ± 10.94, vs. OVX, 303.50 ± 26.56 pg/ml) and up-regulated TRPV5 expression in renal cortex of OVX mice as well as enhanced the expression of PTH receptor (PTH1R) and the ratio of p-PKA/PKA. The PKA inhibitor H89 abolished the induction of serum, prepared from rats treated with FLL extract, on PKA/TRPV5 signaling in renal tubular cells. The CMC identified phenol glycosides, including salidroside and oleuropein, which increased intracellular calcium content, promoted expression of PTH1R and TRPV5 and ratio of p-PKA/PKA as well as decreased calcium excretion in urine of mice fed with high calcium diet. CONCLUSION: Salidroside and oleuropein are major ingredients contributing to the anti-hypercalciuria effects of FLL via acting on PTH1R/PKA/TRPV5 signaling in kidney. Further translational research would be required.

5.
J Pharm Pharmacol ; 73(9): 1230-1239, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-33909081

RESUMO

OBJECTIVES: Xanthohumol (XAN) is a unique component of Humulus lupulus L. and is known for its diverse biological activities. In this study, we investigated whether Xanthohumol could ameliorate memory impairment of APP/PS1 mice, and explored its potential mechanism of action. METHODS: APP/PS1 mice were used for in vivo test and were treated with N-acetylcysteine and Xanthohumol for 2 months. Learning and memory levels were evaluated by the Morris water maze. Inflammatory and oxidative markers in serum and hippocampus and the deposition of Aß in the hippocampus were determined. Moreover, the expression of autophagy and apoptosis proteins was also evaluated by western blot. KEY FINDINGS: Xanthohumol significantly reduced the latency and increased the residence time of mice in the target quadrant. Additionally, Xanthohumol increased superoxide dismutase level and reduced Interleukin-6 and Interleukin-1ß levels both in serum and hippocampus. Xanthohumol also significantly reduced Aß deposition in the hippocampus and activated autophagy and anti-apoptotic signals. CONCLUSIONS: Xanthohumol effectively ameliorates memory impairment of APP/PS1 mice by activating mTOR/LC3 and Bax/Bcl-2 signalling pathways, which provides new insight into the neuroprotective effects of Xanthohumol.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Flavonoides/farmacologia , Hipocampo/efeitos dos fármacos , Humulus/química , Transtornos da Memória/metabolismo , Propiofenonas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Proteína X Associada a bcl-2/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Apoptose , Autofagia , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto , Memória/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/farmacologia , Presenilina-1/metabolismo , Transdução de Sinais
6.
Biomed Pharmacother ; 121: 109566, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31698268

RESUMO

Oxidative stress is a crucial pathogenic factor in osteoporosis. Autophagy is a cellular self-digestion process that can selectively remove damaged organelles under oxidative stress, and thus presents a potential therapeutic target against osteoporosis. Monotropein is an iridoid glycoside which can increase osteoblastic bone formation and be applied for medicinal purpose in China. The aim of this work is to investigate whether autophagy participates the protection effects of monotropein in osteoblasts under oxidative stress and the possible mechanism of such involvement. Here, monotropein was capable of inhibiting the H2O2-induced reactive oxygen species generation in osteoblasts. Monotropein induced autophagy and protected osteoblasts from cytotoxic effects of H2O2, as assessed by viability assays, apoptosis and western blotting. Moreover, it significantly attenuated H2O2-evoked oxidative stress as measured by malondialdehyde, catalase, and superoxide dismutase levels. Importantly, monotropein reduced the phosphorylation of protein kinase B (Akt), mammalian target of rapamycin (mTOR) and its two downstream proteins (p70S6K and 4EBP1). The autophagy level increased in osteoblasts treated with monotropein as represented by an increased in both Beclin1 expression and the LC3-II/LC3-I ratio. However, the Akt activator (SC79) and mTOR activator (MHY1485) suppressed the autophagy level induced by monotropein in H2O2-treated cells. Consequently, the antioxidant effects of monotropein were mediated, at least in part, by enhancing autophagy through the Akt/mTOR pathway. These results suggested that monotropein might be a promising candidate for osteoporosis treatment.


Assuntos
Autofagia/efeitos dos fármacos , Iridoides/farmacologia , Osteoblastos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Células Cultivadas , Peróxido de Hidrogênio/farmacologia , Osteoblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo
7.
Int J Nanomedicine ; 12: 1201-1214, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243084

RESUMO

Surgery and the local placement of an antibiotic are the predominant therapies to treat chronic osteomyelitis. Vancomycin-loaded N-trimethyl chitosan nanoparticles (VCM/TMC NPs) as a potential drug delivery system have high intracellular penetration and effective intracellular antibacterial activity. This study investigated the effects of a biocompatible material, poly(trimethylene carbonate) (PTMC), to increase the sustained effectiveness of an intracellular antibiotic and its potential application in antibiotic delivery. VCM/TMC NP-PTMC was characterized using scanning electron microscopy and Fourier transform infrared spectroscopy to determine the morphology, stability and chemical interaction of the drug with the polymer. Further, the biodegradation, antibacterial activity, protein adsorption, cell proliferation and drug release characteristics were evaluated. In addition, a Staphylococcus aureus-induced osteomyelitis rabbit model was used to investigate the antibiotic activity and bone repair capability of VCM/TMC NP-PTMC. The results showed that the composite beads of VCM/TMC NPs followed a sustained and slow release pattern and had excellent antibacterial activity and a higher protein adsorption and cell proliferation rate than the VCM-PTMC in vitro. Furthermore, VCM/TMC NP-PTMC inhibits bacteria and promotes bone repair in vivo. Thus, VCM/TMC NP-PTMC might be beneficial in periodontal management to reduce the bacterial load at the infection site and promote bone repair.


Assuntos
Anti-Infecciosos/farmacologia , Dioxanos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Polímeros/química , Vancomicina/farmacologia , Adsorção , Animais , Antibacterianos/farmacologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Proliferação de Células/efeitos dos fármacos , Liberação Controlada de Fármacos , Masculino , Testes de Sensibilidade Microbiana , Nanopartículas/ultraestrutura , Proteínas/química , Coelhos , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/química , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA