Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cell Sci ; 131(6)2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29420297

RESUMO

Senescent cells develop a senescence-associated secretory phenotype (SASP). The factors secreted by cells with a SASP have multiple biological functions that are mediated in an autocrine or paracrine manner. However, the status of the protein kinase D1 (PKD1; also known as PRKD1)-mediated classical protein secretory pathway, from the trans-Golgi network (TGN) to the cell surface, during cellular senescence and its role in the cellular senescence response remain unknown. Here, we show that the activities or quantities of critical components of this pathway, including PKD1, ADP-ribosylation factor 1 (ARF1) and phosphatidylinositol 4-kinase IIIß (PI4KIIIß), at the TGN are increased in senescent cells. Blocking of this pathway decreases IL-6 and IL-8 (hereafter IL-6/IL-8) secretion and results in IL-6/IL-8 accumulation in SASP-competent senescent cells. Inhibition of this pathway reduces IL-6/IL-8 secretion during Ras oncogene-induced senescence (OIS), retards Ras OIS and alleviates its associated ER stress and autophagy. Finally, targeting of this pathway triggers cell death in SASP factor-producing senescent cells due to the intracellular accumulation of massive amounts of IL-6/IL-8. Taken together, our results unveil the hyperactive state of the protein secretory pathway in SASP-competent senescent cells and its critical functions in mediating SASP factor secretion and the Ras OIS process, as well as in determining the fate of senescent cells.


Assuntos
Senescência Celular , Fibroblastos/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Proteína Quinase C/metabolismo , Via Secretória , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Fibroblastos/citologia , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Proteína Oncogênica p21(ras)/genética , Proteína Quinase C/genética , Rede trans-Golgi/genética , Rede trans-Golgi/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(21): 7683-8, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24828530

RESUMO

Oncogene-induced senescence (OIS) is an initial barrier to tumor development. Reactive oxygen species (ROS) is critical for oncogenic Ras OIS, but the downstream effectors to mediate ROS signaling are still relatively elusive. Senescent cells develop a senescence-associated secretory phenotype (SASP). However, the mechanisms underlying the regulation of the SASP are largely unknown. Here, we identify protein kinase D1 (PKD1) as a downstream effector of ROS signaling to mediate Ras OIS and SASP. PKD1 is activated by oncogenic Ras expression and PKD1 promotes Ras OIS by mediating inflammatory cytokines interleukin-6 (IL-6) and interleukin-8 (IL-8) via modulation of NF-κB activity. We demonstrate that ROS-protein kinase Cδ (PKCδ)-PKD1 axis is essential for the establishment and maintenance of IL-6/IL8 induction. In addition, ablation of PKD1 causes the bypass of Ras OIS, and promotes cell transformation and tumorigenesis. Together, these findings uncover a previously unidentified role of ROS-PKCδ-PKD1 pathway in Ras OIS and SASP regulation.


Assuntos
Senescência Celular/fisiologia , Proteína Quinase C/metabolismo , Transdução de Sinais/fisiologia , Proteínas ras/metabolismo , Animais , Imunoprecipitação da Cromatina , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Camundongos , Camundongos Endogâmicos NOD , Proteína Quinase C-delta/metabolismo , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
3.
PeerJ Comput Sci ; 7: e635, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604513

RESUMO

Concrete is the main material in building. Since its poor structural integrity may cause accidents, it is significant to detect defects in concrete. However, it is a challenging topic as the unevenness of concrete would lead to the complex dynamics with uncertainties in the ultrasonic diagnosis of defects. Note that the detection results mainly depend on the direct parameters, e.g., the time of travel through the concrete. The current diagnosis accuracy and intelligence level are difficult to meet the design requirement for automatic and increasingly high-performance demands. To solve the mentioned problems, our contribution of this paper can be summarized as establishing a diagnosis model based on the GA-BPNN method and ultrasonic information extracted that helps engineers identify concrete defects. Potentially, the application of this model helps to improve the working efficiency, diagnostic accuracy and automation level of ultrasonic testing instruments. In particular, we propose a simple and effective signal recognition method for small-size concrete hole defects. This method can be divided into two parts: (1) signal effective information extraction based on wavelet packet transform (WPT), where mean value, standard deviation, kurtosis coefficient, skewness coefficient and energy ratio are utilized as features to characterize the detection signals based on the analysis of the main frequency node of the signals, and (2) defect signal recognition based on GA optimized back propagation neural network (GA-BPNN), where the cross-validation method has been used for the stochastic division of the signal dataset and it leads to the BPNN recognition model with small bias. Finally, we implement this method on 150 detection signal data which are obtained by the ultrasonic testing system with 50 kHz working frequency. The experimental test block is a C30 class concrete block with 5, 7, and 9 mm penetrating holes. The information of the experimental environment, algorithmic parameters setting and signal processing procedure are described in detail. The average recognition accuracy is 91.33% for the identification of small size concrete defects according to experimental results, which verifies the feasibility and efficiency.

4.
Protein Cell ; 10(9): 631-648, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30788732

RESUMO

Mitochondrial dysfunctions play major roles in ageing. How mitochondrial stresses invoke downstream responses and how specificity of the signaling is achieved, however, remains unclear. We have previously discovered that the RNA component of Telomerase TERC is imported into mitochondria, processed to a shorter form TERC-53, and then exported back to the cytosol. Cytosolic TERC-53 levels respond to mitochondrial functions, but have no direct effect on these functions, suggesting that cytosolic TERC-53 functions downstream of mitochondria as a signal of mitochondrial functions. Here, we show that cytosolic TERC-53 plays a regulatory role on cellular senescence and is involved in cognition decline in 10 months old mice, independent of its telomerase function. Manipulation of cytosolic TERC-53 levels affects cellular senescence and cognition decline in 10 months old mouse hippocampi without affecting telomerase activity, and most importantly, affects cellular senescence in terc-/- cells. These findings uncover a senescence-related regulatory pathway with a non-coding RNA as the signal in mammals.


Assuntos
Envelhecimento/metabolismo , Senescência Celular/fisiologia , Mitocôndrias/metabolismo , RNA/fisiologia , Telomerase/fisiologia , Animais , Linhagem Celular , Citosol/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Cell Rep ; 24(10): 2589-2595, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30184494

RESUMO

Mitochondrial dysfunctions play major roles in many diseases. However, how mitochondrial stresses are relayed to downstream responses remains unclear. Here we show that the RNA component of mammalian telomerase TERC is imported into mitochondria, processed to a shorter form TERC-53, and then exported back to the cytosol. We found that the import is regulated by PNPASE, and the processing is controlled by mitochondrion-localized RNASET2. Cytosolic TERC-53 levels respond to changes in mitochondrial functions but have no direct effect on these functions. These findings uncover a mitochondrial RNA trafficking pathway and provide a potential mechanism for mitochondria to relay their functional states to other cellular compartments.


Assuntos
Mitocôndrias/metabolismo , RNA/metabolismo , Telomerase/metabolismo , Animais , Citosol/metabolismo , Humanos , Mitocôndrias/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , RNA/genética , Telomerase/genética
6.
Aging (Albany NY) ; 8(10): 2308-2323, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27794562

RESUMO

Sirtuin6(SIRT6) has been implicated as a key factor in aging and aging-related diseases. However, the role of SIRT6 in cellular senescence has not been fully understood. Here, we show that SIRT6 repressed the expression of p27Kip1 (p27) in cellular senescence. The expression of SIRT6 was reduced during cellular senescence, whereas enforced SIRT6 expression promoted cell proliferation and antagonized cellular senescence. In addition, we demonstrated that SIRT6 promoted p27 degradation by proteasome and SIRT6 decreased the acetylation level and protein half-life of p27. p27 acetylation increased its protein stability. Furthermore, SIRT6 directly interacted with p27. Importantly, p27 was strongly acetylated and had a prolonged protein half-life with the reduction of SIRT6 when cells were senescent, compared with those young cells. Finally, SIRT6 markedly rescued senescence induced by p27. Our findings indicate that SIRT6 decreases p27 acetylation, leading to its degradation via ubiquitin-proteasome pathway and then delays cellular senescence.


Assuntos
Proliferação de Células/fisiologia , Senescência Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Sirtuínas/metabolismo , Acetilação , Linhagem Celular , Humanos , Ubiquitina-Proteína Ligases/metabolismo
7.
Aging Cell ; 15(6): 1063-1073, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27613566

RESUMO

Senescent cells display a senescence-associated secretory phenotype (SASP) which contributes to tumor suppression, aging, and cancer. However, the underlying mechanisms for SASP regulation are not fully elucidated. SIRT1, a nicotinamide adenosine dinucleotide-dependent deacetylase, plays multiple roles in metabolism, inflammatory response, and longevity, etc. However, its posttranscriptional regulation and its roles in cellular senescence and SASP regulation are still elusive. Here, we identify the RNA-binding protein hnRNP A1 as a posttranscriptional regulator of SIRT1, as well as cell senescence and SASP regulator. hnRNP A1 directly interacts with the 3' untranslated region of SIRT1 mRNA, promotes its stability, and increases SIRT1 expression. hnRNP A1 delays replicative cellular senescence and prevents from Ras OIS via upregulation of SIRT1 expression to deacetylate NF-κB, thus blunting its transcriptional activity and subsequent IL-6/IL-8 induction. hnRNP A1 overexpression promotes cell transformation and tumorigenesis in a SIRT1-dependent manner. Together, our findings unveil a novel posttranscriptional regulation of SIRT1 by hnRNP A1 and uncover a critical role of hnRNP A1-SIRT1-NF-κB pathway in regulating cellular senescence and SASP expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA