Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
BMC Plant Biol ; 23(1): 499, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37848815

RESUMO

BACKGROUND: Fruit expansion stage is crucial to fruit yield and quality formation, and auxin plays a significant role by mediating multi-hormone signals during fruit expansion. However, till now, it is still unclear of the molecular regulatory network during auxin-mediated peach fruit expansion. RESULTS: Here, exogenous NAA application markedly increased IAA content and drastically decreased ABA content at the fruit expansion stage. Correspondingly, NAA mainly induced the auxin biosynthesis gene (1 PpYUCCA) and early auxin-responsive genes (7PpIAA, 3 PpGH3, and 14 PpSAUR); while NAA down-regulated ABA biosynthesis genes (2 PpNCED, 1 PpABA3, and 1 PpAAO3). In addition, many DEGs involved in other plant hormone biosynthesis and signal transduction were significantly enriched after NAA treatment, including 7 JA, 7 CTK, 6 ETH, and 3 GA. Furthermore, we also found that NAA treatment down-regulated most of genes involved in the growth and development of peach fruit, including the cell wall metabolism-related genes (PpEG), sucrose metabolism-related genes (PpSPS), phenylalanine metabolism-related genes (PpPAL, Pp4CL, and PpHCT), and transcription factors (PpNAC, PpMADS-box, PpDof, PpSBP, and PpHB). CONCLUSION: Overall, NAA treatment at the fruit expansion stage could inhibit some metabolism processes involved in the related genes in the growth and development of peach fruit by regulating multiple-hormone signaling networks. These results help reveal the short-term regulatory mechanism of auxin at the fruit expansion stage and provide new insights into the multi-hormone cascade regulatory network of fruit growth and development.


Assuntos
Ácidos Indolacéticos , Prunus persica , Ácidos Indolacéticos/metabolismo , Frutas/genética , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Hormônios/metabolismo , Crescimento e Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Opt Express ; 31(5): 7887-7899, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859910

RESUMO

The removal of a sapphire substrate by laser lift-off, photoluminescence detection technology, and the luminous efficiency of size-dependent devices are very hot issues for the Micro-LED display, which is thoroughly studied in this paper. The mechanism of thermal decomposition of the organic adhesive layer after laser irradiation is analyzed in detail, and the thermal decomposition temperature of 450 °C solved by the established one-dimensional model is highly consistent with the inherent decomposition temperature of the PI material. The spectral intensity of PL is higher, and the peak wavelength is red-shifted by about 2 nm compared to EL under the same excitation condition. The results of size-dependent device optical-electric characteristics show that the smaller the device size, the lower the luminous efficiency under the same display resolution and PPI conditions, and the higher corresponding display power consumption.

3.
Biodegradation ; 34(2): 155-167, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36592293

RESUMO

Bioreduction of Cr(VI) is cost-effective and environmentally friendly, however, the slow bioreduction rate limits its application. In this study, the potential synergistic enhancement of Cr(VI) bioreduction by shewanella oneidensis MR-1 (S. oneidensis) with goethite and riboflavin (RF) was investigated. The results showed that the S. oneidensis reaction system reduce 29.2% of 20 mg/L Cr(VI) after 42 h reaction, while the S. oneidensis/goethite/RF reaction system increased the Cr(VI) reduction rate to 87.74%. RF as an efficient electron shuttle and Fe(II) from goethite bioreduction were identified as the crucial components in Cr(VI) reduction. XPS analysis showed that the final precipitates of Cr(VI) reduction were Cr(CH3C(O)CHC(O)CH3)3 and Cr2O3 and adhered to the bacterial cell surface. In this process, the microbial surface functional groups such as hydroxyl and carboxyl groups participated in the adsorption and reduction of Cr(VI). Meanwhile, an increase in cytochrome c led to an increase in electron transfer system activity (ETSA), causing a significant enhancement in extracellular electron transfer efficiency. This study provides insight into the mechanism of Cr(VI) reduction in a complex environment where microorganisms, iron minerals and RF coexist, and the synergistic treatment method of Fe(III) minerals and RF has great potential application for Cr(VI) detoxification in aqueous environment.


Assuntos
Compostos Férricos , Minerais , Oxirredução , Cromo , Riboflavina/metabolismo
4.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563155

RESUMO

In this study, 52 AAAP genes were identified in the L. chinense genome and divided into eight subgroups based on phylogenetic relationships, gene structure, and conserved motif. A total of 48 LcAAAP genes were located on the 14 chromosomes, and the remaining four genes were mapped in the contigs. Multispecies phylogenetic tree and codon usage bias analysis show that the LcAAAP gene family is closer to the AAAP of Amborella trichopoda, indicating that the LcAAAP gene family is relatively primitive in angiosperms. Gene duplication events revealed six pairs of segmental duplications and one pair of tandem duplications, in which many paralogous genes diverged in function before monocotyledonous and dicotyledonous plants differentiation and were strongly purification selected. Gene expression pattern analysis showed that the LcAAAP gene plays a certain role in the development of Liriodendron nectary and somatic embryogenesis. Low temperature, drought, and heat stresses may activate some WRKY/MYB transcription factors to positively regulate the expression of LcAAAP genes to achieve long-distance transport of amino acids in plants to resist the unfavorable external environment. In addition, the GAT and PorT subgroups could involve gamma-aminobutyric acid (GABA) transport under aluminum poisoning. These findings could lay a solid foundation for further study of the biological role of LcAAAP and improvement of the stress resistance of Liriodendron.


Assuntos
Liriodendron , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Liriodendron/genética , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
5.
BMC Plant Biol ; 21(1): 123, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648456

RESUMO

BACKGROUND: The CIPKs are a group of plant-specific Ser/Thr protein kinases acting in response to calcium signaling, which plays an important role in the physiological and developmental adaptation of plants to adverse environments. However, the functions of halophyte-derived CIPKs are still poorly understood, that limits a potential application of CIPKs from halophytes for improving the tolerance of glycophytes to abiotic stresses. RESULTS: In this study, we characterized the NtCIPK11 gene from the halophyte Nitraria tangutorum and subsequently analyzed its role in salt and drought stress tolerance, using Arabidopsis as a transgenic model system. NtCIPK11 expression was upregulated in N. tangutorum root, stem and blade tissues after salt or drought treatment. Overexpressing NtCIPK11 in Arabidopsis improved seed germination on medium containing different levels of NaCl. Moreover, the transgenic plants grew more vigorously under salt stress and developed longer roots under salt or drought conditions than the WT plants. Furthermore, NtCIPK11 overexpression altered the transcription of genes encoding key enzymes involved in proline metabolism in Arabidopsis exposed to salinity, however, which genes showed a relatively weak expression in the transgenic Arabidopsis undergoing mannitol treatment, a situation that mimics drought stress. Besides, the proline significantly accumulated in NtCIPK11-overexpressing plants compared with WT under NaCl treatment, but that was not observed in the transgenic plants under drought stress caused by mannitol application. CONCLUSIONS: We conclude that NtCIPK11 promotes plant growth and mitigates damage associated with salt stress by regulating the expression of genes controlling proline accumulation. These results extend our understanding on the function of halophyte-derived CIPK genes and suggest that NtCIPK11 can serve as a candidate gene for improving the salt and drought tolerance of glycophytes through genetic engineering.


Assuntos
Genes de Plantas , Magnoliopsida/genética , Proteínas Serina-Treonina Quinases/genética , Aclimatação/genética , Arabidopsis/fisiologia , Calcineurina/química , Biologia Computacional , Secas , Perfilação da Expressão Gênica , Técnicas de Transferência de Genes , Haplótipos , Magnoliopsida/enzimologia , Magnoliopsida/fisiologia , Plantas Geneticamente Modificadas , Prolina/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Tolerância ao Sal/genética
6.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281216

RESUMO

GAox is a key enzyme for the transformation of gibberellins, and belongs to the 2-ketoglutarate dependent dioxygenase gene family (2ODD). However, a systematic analysis of GAox in the angiosperm L. chinense has not yet been reported. Here, we identified all LcGAox gene family members in L. chinense, which were classified into the three subgroups of GA20ox, C19GA2ox, and C20GA2ox. Comparison of the gene structure, conserve motifs, phylogenetic relationships, and syntenic relationships of gibberellin oxidase gene families in different species indicated that the gene functional differences may be due to the partial deletion of their domains during evolution. Furthermore, evidence for purifying selection was detected between orthologous GAox genes in rice, grape, Arabidopsis, and L. chinense. Analysis of the codon usage patterns showed that mutation pressure and natural selection might have induced codon usage bias in angiosperms; however, the LcGAox genes in mosses, lycophytes, and ambarella plants exhibited no obvious codon usage preference. These results suggested that the gibberellin oxidase genes were more primitive. The gene expression pattern was analyzed in different organs subjected to multiple abiotic stresses, including GA, abscisic acid (ABA), and chlormequat (CCC) treatment, by RNA-seq and qRT-PCR, and the stress- and phytohormone-responsive cis-elements were counted. The results showed that the synthesis and decomposition of GA were regulated by different LcGAox genes in the vegetative and reproductive organs of L. chinense, and only LcGA2ox1,4, and 7 responded to the NaCl, polyethylene glycol, 4 °C, GA, ABA, and CCC treatment in the roots, stems, and leaves of seedlings at different time periods, revealing the potential role of LcGAox in stress resistance.


Assuntos
Giberelinas/metabolismo , Liriodendron/genética , Oxirredutases/genética , Uso do Códon , Regulação da Expressão Gênica de Plantas , Liriodendron/enzimologia , Família Multigênica , Regiões Promotoras Genéticas , Estresse Fisiológico
7.
Phytopathology ; 110(7): 1260-1269, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32202483

RESUMO

Colletotrichum gloeosporioides is a hemibiotrophic pathogen causing significant losses to economically important crops and forest trees, including Liriodendron. To explore the interaction between C. gloeosporioides and Liriodendron and to identify the candidate genes determining the pathogenesis, we sequenced and assembled the whole genome of C. gloeosporioides Lc1 (CgLc1) using PacBio and Illumina next generation sequencing and performed a comparative genomic analysis between CgLc1 and Cg01, the latter being a described endophytic species of the C. gloeosporioides complex. Gene structure prediction identified 15,744 protein-coding genes and 837 noncoding RNAs. Species-specific genes were characterized using an ortholog analysis followed by a pathway enrichment analysis, which showed that genes specific to CgLc1 were enriched for the arginine biosynthetic process. Furthermore, genome synteny analysis revealed that most of the protein-coding genes fell into collinear blocks. However, two clusters of polyketide synthase genes were identified to be specific for CgLc1, suggesting that they might have an important role in virulence control. Transcriptional regulators coexpressed with polyketide synthase genes were detected through a Weighted Correlation Network Analysis. Taken together, this work provides new insight into the virulence- and pathogenesis-associated genes present in C. gloeosporioides and its possible lifestyle.


Assuntos
Colletotrichum , Liriodendron , Doenças das Plantas , Folhas de Planta , Virulência
8.
J Sci Food Agric ; 100(10): 4005-4011, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32337732

RESUMO

BACKGROUND: Potato powder, a rich source of high-quality protein and starch, plays an important role in the production of functional foods. In this study, ball-mill processed potato powders with different particle sizes (278, 208, 129, and 62 µm) were analyzed in terms of physicochemical, pasting, rheological, and digestive properties. RESULTS: Scanning electron microscopy and laser diffraction analysis of the samples revealed mono-model particle-size distributions. X-ray diffraction analysis confirmed structure destruction of starch pellets. Proximate composition and physical property analysis showed an increase in the water, ash, protein, and starch content. Meanwhile, the water solubility index and swelling power values were found to increase with decreasing grain size, and so were the brightness (L*) and redness (b*) values of the potato powders. With particle size reduced to 129 µm, large changes were observed in gelatinization properties, such as peak viscosity, trough viscosity, breakdown viscosity, and final viscosity. Oscillatory rheology results also showed that, with the decrease in particle size, the storage modulus (G') and loss modulus (G″) improved, with highest storage modulus (G') observed in the 129 µm particle size. The hydrolysis rate and glycemic index also increased in the 129 µm potato powder. CONCLUSION: The results provide information that could be useful for improving quality characteristics by using specific grain sizes in the development of potato-based products such as gluten-free products and ethnic food products with particular functional and rheological properties. © 2020 Society of Chemical Industry.


Assuntos
Solanum tuberosum/química , Solanum tuberosum/metabolismo , Digestão , Humanos , Tamanho da Partícula , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Pós/química , Pós/metabolismo , Reologia , Solubilidade , Amido/química , Amido/metabolismo , Viscosidade
9.
J Sci Food Agric ; 99(13): 5771-5777, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31162676

RESUMO

BACKGROUND: Red fish meat (a by-product of fillet processing from grass carp) is a rich source of good-quality protein, which makes it an important candidate for the production of functional foods. In this study, wheat flour was replaced with red fish meat (RFM) leftover from grass carp fillet frames at different levels (100-300 g kg-1 ) in fried snacks on a laboratory scale. The quality characteristics, physicochemical properties and sensory acceptability of the fried snacks were assessed. RESULTS: The addition of RFM significantly (P < 0.05) increased protein, fat, moisture and ash contents, while texture (breakage force) was improved. Expansion and water hydration capacity were decreased with increasing content of RFM. Lightness (L*) was increased whereas redness (a*) and yellowness (b*) were decreased with the addition of RFM. Scanning electron microscopy showed that the protein matrix was increased and fewer starch granules were found when RFM was added. Moreover, in vitro protein digestibility was also increased in samples prepared with RFM compared with the control. Furthermore, essential amino acids (lysine, leucine, threonine and methionine) increased (1.2-fold compared with the control) with increasing RFM content. CONCLUSION: The results suggested that red fish meat can be used to make a new snack product with improved nutritional value and textural properties. © 2019 Society of Chemical Industry.


Assuntos
Carne/análise , Lanches , Animais , Carpas , Cor , Culinária , Farinha/análise , Manipulação de Alimentos , Humanos , Valor Nutritivo , Paladar , Triticum/química , Resíduos/análise
10.
Int J Mol Sci ; 19(1)2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29316708

RESUMO

Carbon monoxide (CO) acts as an important signal in many physiological responses in plants, but its role in plant secondary metabolism is still unknown. Nicotine is the main alkaloid generated in tobacco and the plant hormone jasmonic acid (JA) has previously been reported to efficiently induce its biosynthesis. Whether and how CO interacts with JA to regulate nicotine biosynthesis in tobacco remains elusive. In this study, we demonstrate that high temperature (HT) induces quick accumulation of nicotine in tobacco roots, combined with an increase in CO and JA concentration. Suppressing CO generation reduced both JA and nicotine biosynthesis, whereas exogenous application of CO increased JA and nicotine content. CO causes an increased expression of NtPMT1 (a key nicotine biosynthesis enzyme), via promoting NtMYC2a binding to the G-box region of its promoter, leading to heightened nicotine levels under HT conditions. These data suggest a novel function for CO in stimulating nicotine biosynthesis in tobacco under HT stress, through a JA signal.


Assuntos
Monóxido de Carbono/farmacologia , Temperatura Alta , Nicotiana/metabolismo , Nicotina/biossíntese , Ciclopentanos/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/genética
11.
Entropy (Basel) ; 20(9)2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-33265791

RESUMO

The energy use analysis of coal-fired power plant units is of significance for energy conservation and consumption reduction. One of the most serious problems attributed to Chinese coal-fired power plants is coal waste. Several units in one plant may experience a practical rated output situation at the same time, which may increase the coal consumption of the power plant. Here, we propose a new hybrid methodology for plant-level load optimization to minimize coal consumption for coal-fired power plants. The proposed methodology includes two parts. One part determines the reference value of the controllable operating parameters of net coal consumption under typical load conditions, based on an improved K-means algorithm and the Hadoop platform. The other part utilizes a support vector machine to determine the sensitivity coefficients of various operating parameters for the net coal consumption under different load conditions. Additionally, the fuzzy rough set attribute reduction method was employed to obtain the minimalist properties reduction method parameters to reduce the complexity of the dataset. This work is based on continuously-measured information system data from a 600 MW coal-fired power plant in China. The results show that the proposed strategy achieves high energy conservation performance. Taking the 600 MW load optimization value as an example, the optimized power supply coal consumption is 307.95 g/(kW·h) compared to the actual operating value of 313.45 g/(kW·h). It is important for coal-fired power plants to reduce their coal consumption.

12.
Planta ; 242(6): 1361-90, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26232921

RESUMO

MAIN CONCLUSION: NO acts as the essential signal to enhance poplar tolerance to chilling stress via antioxidant enzyme activities and protein S -nitrosylation modification, NO signal is also strictly controlled by S -nitrosoglutathione reductase and nitrate reductase to avoid the over-accumulation of reactive nitrogen species. Poplar (Populus trichocarpa) are fast growing woody plants with both ecological and economic value; however, the mechanisms by which poplar adapts to environmental stress are poorly understood. In this study, we used isobaric tags for relative and absolute quantification proteomic approach to characterize the response of poplar exposed to cold stress. We identified 114 proteins that were differentially expressed in plants exposed to cold stress. In particular, some of the proteins are involved in reactive oxygen species (ROS) and reactive nitrogen species (RNS) metabolism. Further physiological analysis showed that nitric oxide (NO) signaling activated a series of downstream defense responses. We further demonstrated that NO activated antioxidant enzyme activities and S-nitrosoglutathione reductase (GSNOR) activities, which would reduce ROS and RNS toxicity and thereby enhance poplar tolerance to cold stress. Suppressing NO accumulation or GSNOR activity aggravated cold damage to poplar leaves. Moreover, our results showed that RNS can suppress the activities of GSNOR and NO nitrate reductase (NR) by S-nitrosylation to fine-tune the NO signal and modulate ROS levels by modulating the S-nitrosylation of ascorbate peroxidase protein. Hence, our data demonstrate that NO signaling activates multiple pathways that enhance poplar tolerances to cold stress, and that NO signaling is strictly controlled through protein post-translational modification by S-nitrosylation.


Assuntos
Aldeído Oxirredutases/metabolismo , Temperatura Baixa , Óxido Nítrico/fisiologia , Populus/fisiologia , Proteômica , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia , Populus/enzimologia , Espécies Reativas de Nitrogênio/metabolismo
13.
Chem Asian J ; 19(13): e202400297, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38700937

RESUMO

A protocol has been developed for the synthesis of α-aryl-oxindoles from isatin and Grignard reagents in the presence of diphenyl phosphite for the first time. This reaction was conveniently carried out under mild conditions in a one-pot fashion with moderate to excellent yields.

14.
Food Chem ; 453: 139618, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38795435

RESUMO

This study aimed to develop a satisfactory essential oil (EO) nano-emulsion through high pressure microjet technology and explore its physiochemical properties and synergistic coating effects on grass carp fillets. The optimal conditions for oregano/litsea cubeba (6:4, wt%/wt%) nano-emulsion were shown to be 80 s high pressure microjet pretreatment time, 9000 lb per square inch pretreatment pressure, 6 % oil phase, and 3:2 Km (mass ratio of surfactant to co-surfactant). The obtained nano-emulsion exhibited 100.42 ± 0.96 nm oil diameter at 4 °C after 15-day storage, coupled with high stability after centrifugation, freeze-thaw and heating treatment. Compared with untreated samples at day 6 storage, the nano-emulsion-treated grass carp fillets exhibited improved textural properties, higher water-holding capacity (74.23 % ± 0.80 %), lower total volatile basic nitrogen (TVB-N, 13.46 ± 0.30 mg/100g)/thiobaric acid (TBA,0.43 ± 0.02 mgMDA/100g), and lower total viable spoilage bacteria count (4.98 ± 0.21 lgCFU/g). This study facilitates understanding the combined EOs nano-emulsion on improving the shelf life of grass carp fillets.


Assuntos
Carpas , Emulsões , Conservação de Alimentos , Óleos Voláteis , Animais , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Emulsões/química , Conservação de Alimentos/métodos , Conservação de Alimentos/instrumentação , Alimentos Marinhos/análise , Alimentos Marinhos/microbiologia , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Origanum/química , Tamanho da Partícula
15.
Foods ; 13(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38201197

RESUMO

The gel prepared using Nemipterus virgatus (N. virgatus) surimi alone still has some defects in texture and taste. Complexing with polysaccharides is an efficient strategy to enhance its gel properties. The main objective of this study was to analyze the relationship between the gel quality and molecular interaction of N. virgatus surimi gel after complexing with tapioca starch. The results make clear that the gel strength, hardness, and chewiness of surimi gel were increased by molecular interaction with tapioca starch. At the appropriate addition amount (12%, w/w), the surimi gel had an excellent gel strength (17.48 N), water-holding capacity (WHC) (89.01%), lower cooking loss rate (CLR) (0.95%), and shortened T2 relaxation time. Microstructure analysis indicated that the addition of tapioca starch facilitated even distribution in the gel network structure, resulting in a significant reduction in cavity diameter, with the minimum diameter reduced to 20.33 µm. In addition, tapioca starch enhanced the hydrogen bonding and hydrophobic interaction in the gel system and promoted the transformation of α-helix to ß-sheet (p < 0.05). Correlation analysis showed that the increased physicochemical properties of surimi gel were closely related to the enhanced noncovalent interactions. In conclusion, noncovalent complexation with tapioca starch is an efficient strategy to enhance the quality of surimi gel.

16.
Int J Biol Macromol ; 270(Pt 1): 132066, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705323

RESUMO

A comprehensive multiscale analysis was conducted to explore the effects of different ratios of these materials on its properties. The results show that KC played a crucial role in controlling solution viscosity and gel and sol temperatures. The dissolution time at high water temperatures primarily decreased with an increase in SA content. Higher KC and CS content increased tensile strength (TS) and elongation at break (ε), while also exhibiting better thermal stability. Water vapor transmission (WVT) and permeability (PV) initially decreased, then increased with the increase of SA and CS contents. Finally, an SA:KC:CS ratio of 1:3:2 showed optimal comprehensive properties, with a dissolution time of about 60.0 ± 3.8 s, TS of 23.80 ± 0.29 MPa, ε of 18.61 ± 0.34 %, WVT of 21.74 ± 0.62 g/m2·24h, and PV of 5.39 ± 0.17 meq/kg. Meanwhile, the SA:KC:CS edible food packaging only introduced minimal effects on food after dissolution, and the total bacterial count met regulatory standards.


Assuntos
Filmes Comestíveis , Embalagem de Alimentos , Permeabilidade , Água , Embalagem de Alimentos/métodos , Água/química , Polissacarídeos/química , Solubilidade , Temperatura Alta , Viscosidade , Resistência à Tração , Vapor , Fenômenos Mecânicos , Fast Foods/análise
17.
Int J Biol Macromol ; 241: 124532, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37085070

RESUMO

Pectin and starch crystals were modified by ethyl gallate and octadecyl-trimethoxysilane, respectively, followed by using acylated pectin (AP) and alkylated starch crystals (ASCs) as bioactive reagents and hydrophobic enhancers to improve the physiochemical properties of gelatin-based films and evaluate their coating preservation effects on golden pomfret. The properties of AP and ASC were investigated by Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis), proton-nuclear magnetic resonance (1H NMR) and X-ray diffraction (XRD). The ethyl-gallate-modified pectin/gelatin (AP/G) containing 3 % ASC (AP/G/ASC-3 %) was shown to have the maximum tensile strength and Young's modulus of all the tested composite films. The AP/G containing 10 % ASC exhibited a water contact angle higher than 94°, coupled with a significant improvement in UV-shielding efficiency. FTIR and SEM analysis of the AP/G/ASC-3 % film indicated that the molecular interactions in the composite film components were noncovalent linkages, including hydrogen bonds, hydrophobic interactions, and electrostatic interactions, contributing to homogeneous and smooth microstructures. Additionally, the solutions of AP/G and AP/G/ASC composite films presented obvious antioxidant and antibacterial activities against Escherichia coli and Staphylococcus aureus. Furthermore, the AP/G and AP/G/ASC active coatings could effectively inhibit lipid oxidation and improve the textural acceptability of golden pomfret (Trachinotus blochii) fillets during 4 °C storage.


Assuntos
Antioxidantes , Amido , Antioxidantes/farmacologia , Antioxidantes/química , Amido/química , Pectinas/farmacologia , Pectinas/química , Gelatina/química , Antibacterianos/farmacologia , Antibacterianos/química
18.
Chemosphere ; 344: 140219, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741368

RESUMO

Rhizosphere phosphatases can exhibit hormetic effects in response to cadmium (Cd) ion stimulation. However, understanding the mechanisms underlying hormesis effects on soil ecosystems is challenging as studies on hormesis are usually specific to an organism, cell, or organ. To comprehensively investigate the mechanism of phosphatase hormesis, this study utilized in situ zymography and metabolomics to analyze the rhizosphere of Trifolium repens L. (white clover). Zymograms showed that rhizosphere phosphatase displayed a hormetic effect in 10 mg kg-1 Cd contaminated soil, with a hotspot area 1.8 times larger than non-Cd contaminated soil and a slight increase in enzyme activity. Nevertheless, the phosphatase activity was substantially suppressed upon elevating the Cd concentration in the soil to 50 mg kg-1. Differential metabolite identification and KEEG pathway enrichment analysis revealed that both rhizosphere organic acids and amino acid compounds positively affected phosphatase activity, and both were able to stabilize complexation with Cd ions via carboxyl groups. Besides, molecular docking models suggested that Cd ions act as cofactors to induce the formation of hydrogen bonds between amino acids/organic acids and phosphatase residues to form a triplet complex with a more stable structure, thereby improving phosphatase activity. The results indicated that amino acids and organic acids are heavily enriched in the rhizosphere of white clover and form a particular structure with soil Cd ions and phosphatase, which is essential for inducing the phosphatase hormesis as a detoxification mechanism in the rhizosphere micro-ecosystem.


Assuntos
Poluentes do Solo , Trifolium , Cádmio/análise , Rizosfera , Ecossistema , Hormese , Monoéster Fosfórico Hidrolases/metabolismo , Trifolium/metabolismo , Simulação de Acoplamento Molecular , Aminoácidos/metabolismo , Compostos Orgânicos/metabolismo , Solo/química , Poluentes do Solo/análise
19.
J Food Sci ; 87(7): 3013-3025, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35708190

RESUMO

In this study, pectin was modified with ferulic acid (Fa), trans-ferulic acid (trans-Fa), methyl gallate (MG), and ethyl gallate (EG) via the enzymatic method using aqueous/organic phases to enhance its physiochemical and bio-active properties. Results revealed that lipase might catalyze the hydrolysis of the ester bond within pectin in aqueous phase and prompt the transesterification between the hydroxyl group in the para position in Fa/trans-Fa or the 2'-OH group of MG/EG and the carboxylic group of pectin in the organic phase. The graft ratio was 21.00%, 21.67%, 13.24%, and 11.93% for the Fa-, trans-Fa-, MG-, and EG-modified pectin, respectively. In addition, compared with native pectin, the modified pectin exhibited improved apparent viscosity and emulsion activity. Moreover, the clearance of 1,1-diphenyl-2-picryl hydrazine (DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) was effectively enhanced for the modified pectin. Furthermore, the modified pectin exhibited strong antibacterial activity against Escherichia coli and Staphylococcus aureus while no cytotoxic effects based on the results of cell culture experiments. Our results provide a theoretical basis for the expansion of pectin applications in the food and pharmaceutical industries.


Assuntos
Ésteres , Pectinas , Antioxidantes/química , Ácidos Cumáricos/farmacologia , Escherichia coli , Ésteres/farmacologia , Ácido Gálico/farmacologia , Pectinas/química , Pectinas/farmacologia , Staphylococcus aureus
20.
Food Chem X ; 15: 100420, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36211770

RESUMO

Aimed at exploring the impact of fatty acid side chains on the anthocyanins, n-valeric acid, n-decanoic acid and myristic acid were used to grafting onto the blueberry anthocyanins, and the acylating degree value of the of n-valeric acid acylated anthocyanins (Va-An), n-decanoic acid acylated anthocyanins (De-An) and myristic acid acylated anthocyanins (My-An) reached 6.43 %, 7.56% and 8.38 %, respectively. After acylation modification, the octanol-water partition coefficient of the anthocyanins increased from -0.20 (native anthocyanins, Na-An) to 0.65 (Va-An), 0.66 (De-An) and 0.72 (My-An), respectively, indicating the increasement of the lipid solubility. Besides, although the DPPH clearance of acylated anthocyanins was lower than that of native anthocyanins, the inhibition ratio of ß-carotene bleaching and malonaldehyde reduction effect of the acylated blueberry anthocyanins in Caenorhabditis elegans were both stronger than that of native anthocyanins, which might be caused by the improvement of lipid solubility of the anthocyanins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA