Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202409162, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860443

RESUMO

The application of supramolecular assembly (SA) with room temperature phosphorescence (RTP) in aqueous phase has the potential to revolutionize numerous fields. However, using simple molecules with crystalline RTP to construct SA with aqueous phase RTP is hardly possible from the standpoint of forces. The reason lies in that the transition from crystal to SA involves a structure transformation from highly stable to more dynamic state, leading to increased non-radiative deactivation pathways and silent RTP signal. Here, with the benefit of the confinement from the layered double hydroxide (LDH), various simple molecules (benzene derivatives) can successfully form metastable SA with aqueous phase RTP. The maximum of RTP lifetime and efficiency can reach 654.87 ms and 5.02%, respectively. Mechanistic studies reveal the LDH energy trap can strengthen the intermolecular interaction, providing the prerequisite for the existence of metastable SA and appearance of aqueous phase RTP. The universality of this strategy will usher exploration into other multifunctional monomer, facilitating the development of SAs with aqueous phase RTP.

2.
Small ; 19(44): e2303497, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37376810

RESUMO

Homochiral supramolecular assembly (HSA) based on achiral molecules has provided important clues to understand the origin of biological homochirality from the aspect of symmetry breaking. However, planar achiral molecules still face the challenge of forming HSA due to the lack of driving force for twisted stacking, which is a prerequisite for homochirality. Here, with the benefit of the formation of 2D intercalated layered double hydroxide (LDH, host-guest nanomaterials) in vortex motion, planar achiral guest molecules can form the chiral units with spatially asymmetrical structure in the confinement space of LDH. Once the LDH is removed, these chiral units are in a thermodynamic non-equilibrium state, which can be amplified to HSA by self-replicating. Especially, the homochiral bias can be predicted in advance by controlling the vortex direction. Therefore, this study breaks the bottleneck of complicated molecular design and provides a new technology to achieve HSA made of planar achiral molecules with definite handedness.

3.
Toxicol Appl Pharmacol ; 470: 116547, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37178933

RESUMO

Daunorubicin (DNR-) induced cardiotoxicity seriously restricts its clinical application. Transient receptor potential cation channel subfamily C member 6 (TRPC6) is involved in multiple cardiovascular physiological and pathophysiological processes. However, the role of TRPC6 anthracycline-induced cardiotoxicity (AIC) remains unclear. Mitochondrial fragmentation greatly promotes AIC. TRPC6-mediated ERK1/2 activation has been shown to favor mitochondrial fission in dentate granule cells. The aim of the present study was to elucidate the effects of TRPC6 on daunorubicin- induced cardiotoxicity and identify the mechanisms associated with mitochondrial dynamics. The sparkling results showed that TRPC6 was upregulated in models in vitro and in vivo. TRPC6 knockdown protected cardiomyocytes from DNR-induced cell apoptosis and death. DNR largely facilitated mitochondrial fission, boosted mitochondrial membrane potential collapse and damaged debilitated mitochondrial respiratory function in H9c2 cells,these effects were accompanied by TRPC6 upregulation. siTRPC6 effectively inhibited these mitochondrial adverse aspects showing a positive unexposed effect on mitochondrial morphology and function. Concomitantly, ERK1/2-DRP1 which is related to mitochondrial fission was significantly activated with amplified phosphorylated forms in DNR-treated H9c2 cells. siTRPC6 effectively suppressed ERK1/2-DPR1 over activation, hinting at a potential correlation between TRPC6 and ERK1/2-DRP1 by which mitochondrial dynamics are possibly modulated in AIC. TRPC6 knockdown also raised the Bcl-2/Bax ratio, which may help to block mitochondrial fragmentation-related functional impairment and apoptotic signaling. These findings suggested an essential role of TRPC6 in AIC by intensifying mitochondrial fission and cell death via ERK1/2-DPR1, which could be a potential therapeutic target for AIC.


Assuntos
Daunorrubicina , Miócitos Cardíacos , Canal de Cátion TRPC6 , Animais , Ratos , Apoptose , Cardiotoxicidade/metabolismo , Morte Celular , Daunorrubicina/toxicidade , Dinaminas/metabolismo , Sistema de Sinalização das MAP Quinases , Dinâmica Mitocondrial , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6/metabolismo
4.
Angew Chem Int Ed Engl ; 62(23): e202303063, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37022095

RESUMO

The emergence of time-dependent phosphorescence color (TDPC) materials has taken information encryption to high-security levels. However, due to the only path of exciton transfer, it is almost impossible to obtain TDPC for chromophores with a single emission center. Theoretically, in inorganic-organic composites, the exciton transfer of organic chromophores depends on the inorganic structure. Here, we assign two structural effects to inorganic NaCl by metal (Mg2+ or Ca2+ or Ba2+ ) doping, which triggers the TDPC performance of carbon dots (CDs) with a single emission center. The resulting material is used for multi-level dynamic phosphorescence color 3D coding to achieve information encryption. The structural confinement activates the green phosphorescence of CDs; while the structural defect activates tunneling-related yellow phosphorescence. Such simply doped inorganic matrices can be synthesized using the periodic table of metal cations, endowing chromophores with tremendous control over TDPC properties. This demonstration extends the design view of dynamic luminescent materials.

5.
Molecules ; 27(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36235054

RESUMO

Carbon dots (CDs) have excellent optical properties, low toxicity and easy preparation, which have led to them being widely used in biomedicine, sensing and optical devices. However, although great progress has been made in the preparation of CDs, the detailed exploration of their photoluminescence (PL) mechanism is still under debate due to their complex structures and surface functionalities. Here, we proposed a single change in the pH of the synthesis condition, which had no effect on the CDs intrinsic core states and avoided the mutual influence of multiple PL origins. The m-phenylenediamine (m-PD) served as a carbon source, whose protonation degree determined the surface state of the resulting CDs and the accompanying fluorescence characteristics. The as-obtained CDs materials can be applied in the chemical sensor and anti-counterfeiting fields in a targeted manner. Therefore, our work not only contributes to the explanation of the CDs PL mechanism, but also obtains a series of CDs materials with controllable PL properties.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Pontos Quânticos/química
6.
Appl Microbiol Biotechnol ; 105(23): 8663-8674, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34716789

RESUMO

The stacking of steel slag has detrimental effects mainly for the waste of resources and the pollution of environment. In this study, a novel method based on microbially induced calcium precipitation (MICP) was proposed by utilizing a type of microorganism named Bacillus mucilaginosus, which could secrete carbonic anhydrase (CA) through the metabolism process, accelerating the hydration of carbon dioxide (CO2) and thus facilitating the formation of carbonate ions (CO32-). First, comparing the biologically deposited calcium carbonate with the chemically deposited one, it was found that the crystallinity and crystal size of the biological deposition was lower, leading to its cementitious properties. Under the condition of 1 wt. (weight) % dosage, the carbonation degree increased from 66.34 to 86.25% and the compressive strength improved greatly from 7.4 to 11.2 MPa as well. The weight gain rate of biologically carbonated specimens was also twice as much as the directly carbonated ones. This work strongly demonstrated that biological carbonation technology could not only improve the CO2 sequestration potential of steel slag but also enhance the mechanical properties and durability of steel slag products. KEY POINTS: • Bacillus mucilaginosus could resuscitate and proliferate in the steel slag environment. • B. mucilaginosus secreted carbon anhydrase, which could accelerate the hydration of CO2 and facilitate the precipitation of calcium carbonate. • Biologically carbonated steel slag had greater mechanical performance than directly carbonated one.


Assuntos
Resíduos Industriais , Aço , Carbonato de Cálcio , Dióxido de Carbono , Carbonatos , Resíduos Industriais/análise , Paenibacillus
7.
Appl Opt ; 60(27): 8616-8623, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612964

RESUMO

Mid-infrared (mid-IR) multispectral microscopy, especially operating at the wavelength of 5-11 µm, is an effective tool for detecting, identifying, and quantifying the structure and composition of biological tissues. Compared with that based on the optical lens, the mid-infrared microscope composed of off-axis parabolic (OAP) mirrors is low cost, simple, and suitable for longer range of wavelength without chromatic aberrations, while keeping the optical transmission efficiency. Here we report a compact and versatile mid-infrared multispectral confocal microscope based on off-axis parabolic mirrors. We also perform numerical calculations based on the vectorial diffraction theory on OAP mirrors and analyze the typical aberrations and misalignment of the OAP-based optical system. Finally, we perform multispectral imaging of the epiretinal membrane of the human eyes with the spectrum selected according to its resonance absorption peak. The system is designed to perform multispectral or even hyperspectral imaging to identify and predict potential disease.


Assuntos
Membrana Epirretiniana/diagnóstico por imagem , Microscopia Confocal/instrumentação , Desenho de Equipamento , Humanos , Lasers , Microscopia Confocal/métodos , Dispositivos Ópticos , Razão Sinal-Ruído , Espectrofotometria Infravermelho
8.
Proc Natl Acad Sci U S A ; 115(9): 2004-2009, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440381

RESUMO

Organic compounds are desirable for sustainable Li-ion batteries (LIBs), but the poor cycle stability and low power density limit their large-scale application. Here we report a family of organic compounds containing azo group (N=N) for reversible lithiation/delithiation. Azobenzene-4,4'-dicarboxylic acid lithium salt (ADALS) with an azo group in the center of the conjugated structure is used as a model azo compound to investigate the electrochemical behaviors and reaction mechanism of azo compounds. In LIBs, ADALS can provide a capacity of 190 mAh g-1 at 0.5 C (corresponding to current density of 95 mA g-1) and still retain 90%, 71%, and 56% of the capacity when the current density is increased to 2 C, 10 C, and 20 C, respectively. Moreover, ADALS retains 89% of initial capacity after 5,000 cycles at 20 C with a slow capacity decay rate of 0.0023% per cycle, representing one of the best performances in all organic compounds. Superior electrochemical behavior of ADALS is also observed in Na-ion batteries, demonstrating that azo compounds are universal electrode materials for alkali-ion batteries. The highly reversible redox chemistry of azo compounds to alkali ions was confirmed by density-functional theory (DFT) calculations. It provides opportunities for developing sustainable batteries.

9.
Chem Soc Rev ; 49(2): 433-464, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31939475

RESUMO

Hydrogels are a unique class of polymeric materials that possess an interconnected porous network across various length scales from nano- to macroscopic dimensions and exhibit remarkable structure-derived properties, including high surface area, an accommodating matrix, inherent flexibility, controllable mechanical strength, and excellent biocompatibility. Strong and robust adhesion between hydrogels and substrates is highly desirable for their integration into and subsequent performance in biomedical devices and systems. However, the adhesive behavior of hydrogels is severely weakened by the large amount of water that interacts with the adhesive groups reducing the interfacial interactions. The challenges of developing tough hydrogel-solid interfaces and robust bonding in wet conditions are analogous to the adhesion problems solved by marine organisms. Inspired by mussel adhesion, a variety of catechol-functionalized adhesive hydrogels have been developed, opening a door for the design of multi-functional platforms. This review is structured to give a comprehensive overview of adhesive hydrogels starting with the fundamental challenges of underwater adhesion, followed by synthetic approaches and fabrication techniques, as well as characterization methods, and finally their practical applications in tissue repair and regeneration, antifouling and antimicrobial applications, drug delivery, and cell encapsulation and delivery. Insights on these topics will provide rational guidelines for using nature's blueprints to develop hydrogel materials with advanced functionalities and uncompromised adhesive properties.


Assuntos
Biomimética , Catecóis/química , Hidrogéis/química , Adesivos/química , Propriedades de Superfície
10.
Pharm Biol ; 58(1): 1055-1063, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33096951

RESUMO

CONTEXT: Ginsenoside Rb1, the main active ingredient of ginseng, exhibits ex vivo depression of store-operated calcium entry (SOCE) and related vasoconstriction in pulmonary arteries derived from pulmonary hypertension (PH) rats. However, the in vivo effects of ginsenoside Rb1 on PH remain unclear. OBJECTIVE: This study explored the possibility of using ginsenoside Rb1 as an in vivo preventive medication for type I PH, i.e., pulmonary arterial hypertension (PAH), and potential mechanisms involving SOCE. MATERIALS AND METHODS: Male Sprague-Dawley rats (170-180 g) were randomly divided into Control, MCT, and MCT + Rb1 groups (n = 20). Control rats received only saline injection. Rats in the MCT + Rb1 and MCT groups were intraperitoneally administered single doses of 50 mg/kg monocrotaline (MCT) combined with 30 mg/kg/day ginsenoside Rb1 or equivalent volumes of saline for 21 consecutive days. Subsequently, comprehensive parameters related to SOCE, vascular tone, histological changes and hemodynamics were measured. RESULTS: Ginsenoside Rb1 reduced MCT-induced STIM1, TRPC1, and TRPC4 expression by 35.00, 31.96, and 32.24%, respectively, at the protein level. SOCE-related calcium entry and pulmonary artery contraction decreased by 162.6 nM and 71.72%. The mean pulmonary artery pressure, right ventricle systolic pressure, and right ventricular mass index decreased by 19.5 mmHg, 21.6 mmHg, and 39.50%. The wall thickness/radius ratios decreased by 14.67 and 17.65%, and the lumen area/total area ratios increased by 18.55 and 15.60% in intrapulmonary vessels with 51-100 and 101-150 µm o.d. CONCLUSION: Ginsenoside Rb1, a promising candidate for PH prevention, inhibited SOCE and related pulmonary vasoconstriction, and relieved MCT-induced PAH in rats.


Assuntos
Cálcio/metabolismo , Ginsenosídeos/farmacologia , Hipertensão Arterial Pulmonar/prevenção & controle , Animais , Modelos Animais de Doenças , Masculino , Monocrotalina , Panax/química , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Vasoconstrição/efeitos dos fármacos
11.
Pathobiology ; 86(5-6): 274-284, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31574524

RESUMO

BACKGROUND: Effective antiretroviral therapy extends the survival of patients with human immunodeficiency virus (HIV)/acquired immune deficiency syndrome, but these patients remain at higher risk for heart diseases compared with the general population. Previous studies have suggested that HIV-1 glycoprotein 120 (gp120) may be associated with heart disease. However, the underlying mechanisms by which HIV-1 gp120-mediated myocardial injury occurs remain unknown. OBJECTIVE: The current study aimed to uncover the mechanism of C-C chemokine receptor 5 (CCR5) coreceptor (R5) HIV-1 gp120-induced myocardial injury. METHODS: Morphology analysis, determination of the percentage of cell apoptosis, as well as lactate dehydrogenase (LDH) and creatine kinase (CK) assays were used to analyze whether R5 HIV-1 gp120 induced myocardial cell injury. We analyzed the phosphorylation of p38 mitogen-activated protein kinase (MAPK) with the CCR5 antagonist D-Ala-peptide T-amide (DAPTA) and NMDA receptor antagonist MK801, detected LDH and CK assays with p38 MAPK antagonist SB203580 (SB), and detected the percentage of cell apoptosis and death with DAPTA to investigate the mechanism of R5 HIV-1 gp120-induced myocardial cell injury. RESULTS: R5 HIV-1 gp120 damaged myocardial cells and induced p38 MAPK phosphorylation. SB blocked R5 HIV-1 gp120-induced myocardial cell injury. DAPTA blocked R5 HIV-1 gp120-mediated p38 MAPK phosphorylation, while MK801 did not. DAPTA inhibited R5 HIV-1 gp120-induced myocardial cell injury. CONCLUSION: Our data indicate that R5 HIV-1 gp120 activated p38 MAPK to trigger myocardial cell injury by the CCR5 coreceptor.


Assuntos
Proteína gp120 do Envelope de HIV/genética , Miócitos Cardíacos/patologia , Receptores CCR5/genética , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Células Cultivadas , Feminino , HIV-1 , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptores CCR5/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética
12.
Methods ; 140-141: 212-222, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29454082

RESUMO

Combining stimulated emission depletion and fluorescence correlation spectroscopy (STED-FCS) provides a powerful and sensitive tool for studying the molecular dynamics in live cells with high spatio-temporal resolution. STED-FCS gives access to molecular diffusion characteristic at the nanoscale occurring within short period of times. However due to the incomplete suppression of fluorescence in the STED process, the STED-FCS point spread function (PSF) deviates from a Gaussian shape and challenges the analysis of the auto-correlation curves obtained by FCS. Here, we model the effect of the incomplete fluorescence suppression in STED-FCS experiments and propose a new fitting model improving the accuracy of the diffusion times and average molecule numbers measurements. The implementation of a STED module with pulsed laser source on a commercial confocal/FCS microscope allowed us to apply the STED-background corrected model to fit the STED-FCS measurements. The experimental results are in good accordance with the theoretical analysis both for the number of molecules and the diffusion time which decrease accordingly with the STED power.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Intravital/métodos , Modelos Químicos , Espectrometria de Fluorescência/métodos , Citoesqueleto de Actina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Difusão , Fluorescência , Microscopia Intravital/instrumentação , Citometria de Varredura a Laser/instrumentação , Citometria de Varredura a Laser/métodos , Lasers , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Software , Espectrometria de Fluorescência/instrumentação
13.
Cell Physiol Biochem ; 49(1): 172-189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30134231

RESUMO

BACKGROUND/AIMS: Pulmonary arterial hypertension (PAH) is a severe and debilitating disease characterized by remodeling of the pulmonary vessels, which is driven by excessive proliferation and migration and apoptosis resistance in pulmonary artery smooth muscle cells (PASMCs). The calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) signaling pathway is the most important downstream signaling pathway of store-operated Ca2+ entry (SOCE), which is increased in PAH. CaN/NFAT has been reported to contribute to abnormal proliferation in chronic hypoxia (CH)-induced PAH. However, the effect of CaN/NFAT signaling on PASMC proliferation, migration and apoptosis in monocrotaline (MCT)-induced PAH remains unclear. METHODS: PAH rats were established by a single intraperitoneal injection of MCT for 21 days. PASMCs were isolated and cultured in normal and MCT-induced PAH Sprague-Dawley rat. PASMCs were treated with CsA targeting CaN and siRNA targeting NFATc2-4 gene respectively by liposome. We investigated the expression of calcineurin/NFAT signaling by immunofluorescence, qRT-PCR and Western blotting methods. Cell proliferation was monitored using MTS reagent or by assessing proliferating cell nuclear antigen (PCNA) expression. Cell apoptosis was evaluated with an Annexin V - FITC/propidium iodide (PI) apoptosis kit by flow cytometry. PASMC migration was assessed with a Transwell chamber. RESULTS: MCT successfully induced PAH and pulmonary vascular remodeling in rats. CaN phosphatase activity and nuclear translocation of NFATc2-4 were increased in PASMCs derived from MCT-treated rats. In addition, CaNBß/NFATc2-4 expression was amplified at the mRNA and protein levels. PASMC proliferation and migration were markedly inhibited in a dosedependent manner by cyclosporin A (CsA). Furthermore, siRNA targeting NFATc2 and NFATc4 attenuated the excessive proliferation and migration and apoptosis resistance in PASMCs derived from both CON and MCT-treated rats, while NFATc3 knockdown specifically affected MCT-PASMCs. CONCLUSION: Our results demonstrate that CaN/NFAT signaling is activated and involved in the modulation of PASMC proliferation, migration and apoptosis in MCT-induced PAH.


Assuntos
Apoptose , Calcineurina/metabolismo , Proliferação de Células , Hipertensão Pulmonar/patologia , Fatores de Transcrição NFATC/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Apoptose/efeitos dos fármacos , Calcineurina/química , Hipóxia Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclosporina/farmacologia , Modelos Animais de Doenças , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Masculino , Monocrotalina/toxicidade , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Fatores de Transcrição NFATC/antagonistas & inibidores , Fatores de Transcrição NFATC/genética , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Artéria Pulmonar/citologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
14.
J Comput Chem ; 39(6): 307-318, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29135037

RESUMO

Building upon our recently developed partial Hessian fitting (PHF) method (Wang et al., J. Comput. Chem. 2016, 37, 2349), we formulated and implemented two other rapid force-field parameterization schemes called full Hessian fitting (FHF) and internal Hessian fitting (IHF), and comparisons were made among these three parameterization schemes to assess their performance. FHF minimizes deviation between the Hessian matrices in Cartesian coordinates computed by quantum mechanics (QM) and molecular mechanics (MM), to determine the best possible MM force-constant parameters. While PHF requires step-by-step fittings of 3 × 3 partial Hessian matrices, FHF compares the lower triangular part of the QM and MM Hessian matrices, which allows simultaneous determination of all force-constant parameters. In addition to this simple FHF scheme, IHF was developed such that it considers the Hessian matrices in redundant internal coordinates, where all possible internal coordinates that arise from the user-defined interatomic connectivity are utilized. The results show that IHF performs best overall, followed by PHF and then FHF. Python-based programing codes were developed to automate various tedious steps involved in the parameterization processes. © 2017 Wiley Periodicals, Inc.

15.
Angew Chem Int Ed Engl ; 57(24): 7146-7150, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29704298

RESUMO

Low-cost multivalent battery chemistries (Mg2+ , Al3+ ) have been extensively investigated for large-scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li+ , Mg2+ , Al3+ ) at an extremely fast rate. The ion-coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (-40 to 50 °C), making the low-cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion-coordinated mechanism opens a new foundation for the development of high-energy and high-power multivalent batteries.

16.
J Comput Chem ; 37(26): 2349-59, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27497261

RESUMO

We present a new protocol for deriving force constant parameters that are used in molecular mechanics (MM) force fields to describe the bond-stretching, angle-bending, and dihedral terms. A 3 × 3 partial matrix is chosen from the MM Hessian matrix in Cartesian coordinates according to a simple rule and made as close as possible to the corresponding partial Hessian matrix computed using quantum mechanics (QM). This partial Hessian fitting (PHF) is done analytically and thus rapidly in a least-squares sense, yielding force constant parameters as the output. We herein apply this approach to derive force constant parameters for the AMBER-type energy expression. Test calculations on several different molecules show good performance of the PHF parameter sets in terms of how well they can reproduce QM-calculated frequencies. When soft bonds are involved in the target molecule as in the case of secondary building units of metal-organic frameworks, the MM-optimized geometry sometimes deviates significantly from the QM-optimized one. We show that this problem is rectified effectively by use of a simple procedure called Katachi that modifies the equilibrium bond distances and angles in bond-stretching and angle-bending terms. © 2016 Wiley Periodicals, Inc.

17.
Cell Physiol Biochem ; 36(6): 2121-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26279420

RESUMO

BACKGROUND: Daunorubicin (DNR)-induced cardiotoxicity, which is closely associated with cardiomyocyte apoptosis, limits the drug's clinical application. The activation of the extracellular regulated protein kinases (ERKs) pathway is responsible for the pro-apoptosis effect of DNR Sodium ferulate (SF) has recently been found to attenuate both DNR-induced cardiotoxicity and mitochondrial apoptosis in juvenile rats. Nonetheless, the precise mechanism underlying SF-induced cardio-protection remains unclear. METHODS: The DNR-injured H9c2 cell model was prepared by incubating the cells in 1 µM DNR for 24 h. Amounts of 15.6, 31.3 or 62.5 µM SF were simultaneously added to the cells. The effect of SF on the cytotoxic and apoptotic parameters of the cells was studied by monitoring apoptosis regulation via the ERKs pathway. RESULTS: SF attenuated DNR-induced cell death (particularly apoptotic death), cTnI and ß-tubulin degradation, and cellular morphological changes. SF reduced mitochondrial membrane potential depolarization, cytochrome c leakage, and caspase-9 and caspase-3 activation. SF also decreased ERK1/2, phospho-ERK1/2, p53 and Bax expression and increased Bcl-2 expression. These effects were similar to the results observed when using the pharmacological ERKs phosphorylation inhibitor, AZD6244. CONCLUSION: We determined that SF protects H9c2 cells from DNR-induced apoptosis through a mechanism that involves the interruption of the ERKs signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos Cumáricos/farmacologia , Daunorrubicina/efeitos adversos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Caspase 9/metabolismo , Linhagem Celular , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células HL-60 , Humanos , Concentração Inibidora 50 , Células K562 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ratos , Troponina I/metabolismo , Tubulina (Proteína)/metabolismo , Proteína X Associada a bcl-2/metabolismo
18.
Cell Physiol Biochem ; 35(4): 1467-81, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25791507

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is characterized by sustained vasoconstriction, enhanced vasoreactivity and vascular remodeling, which leads to right heart failure and death. Despite several treatments are available, many forms of PH are still incurable. Ginsenoside Rb1, a principle active ingredient of Panax ginseng, exhibits multiple pharmacological effects on cardiovascular system, and suppresses monocrotaline (MCT)-induced right heart hypertrophy. However, its effect on the pulmonary vascular functions related to PH is unknown. METHODS: We examined the vasorelaxing effects of ginsenoside Rb1 on endothelin-1 (ET-1) induced contraction of pulmonary arteries (PAs) and store-operated Ca(2+) entry (SOCE) in pulmonary arterial smooth muscle cells (PASMCs) from chronic hypoxia (CH) and MCT-induced PH. RESULTS: Ginsenoside Rb1 elicited concentration-dependent relaxation of ET-1-induced PA contraction. The vasorelaxing effect was unaffected by nifedipine, but abolished by the SOCE blocker Gd(3+). Ginsenoside Rb1 suppressed cyclopiazonic acid (CPA)-induced PA contraction, and CPA-activated cation entry and Ca(2+) transient in PASMCs. ET-1 and CPA-induced contraction, and CPA-activated cation entry and Ca(2+) transients were enhanced in PA and PASMCs of CH and MCT-treated rats; the enhanced responses were abolished by ginsenoside Rb1. CONCLUSION: Ginsenoside Rb1 attenuates ET-1-induced contractile response via inhibition of SOCE, and it can effectively antagonize the enhanced pulmonary vasoreactivity in PH.


Assuntos
Cálcio/metabolismo , Ginsenosídeos/farmacologia , Contração Muscular/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Animais , Canais de Cálcio/metabolismo , Hipóxia Celular , Células Cultivadas , Modelos Animais de Doenças , Endotelina-1/metabolismo , Gadolínio/toxicidade , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Indóis/farmacologia , Masculino , Monocrotalina/toxicidade , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Nifedipino/farmacologia , Panax/química , Panax/metabolismo , Artéria Pulmonar/citologia , Ratos , Ratos Sprague-Dawley , Retículo Sarcoplasmático/metabolismo
19.
J Cardiovasc Pharmacol ; 63(4): 360-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24336018

RESUMO

Daunorubicin (DNR) is a widely used chemotherapeutic agent; however, its clinical use is limited because of its cardiotoxicity. This study was aimed to investigate the protective effect of sodium ferulate (SF), an effective component from traditional Chinese herbs, against DNR-induced cardiotoxicity in juvenile rats. DNR was administered intraperitoneally to rats at the dosage of 2.5 mg·kg(-1)·wk(-1) for 5 consecutive weeks (cumulative dose of 12.5 mg/kg) or in combination with intraperitoneal injection of SF at 50 mg·kg(-1)·d(-1) over a period of 30 days. The animals were killed 6 days after the last injection of DNR. SF significantly ameliorated the DNR-induced cardiac dysfunction, structural damage of the myocardium, and release of lactate dehydrogenase and creatine kinase. Treatment with SF also reversed DNR-induced oxidative stress as evidenced by a decrease in malondialdehyde levels with a concomitant increase in myocardical superoxide dismutase activities. Furthermore, SF afforded significant cardioprotection against DNR-induced apoptosis in vivo and effectively suppressed the complex mitochondrion-dependent apoptotic signaling triggered by DNR. This study indicates that SF may improve cardiac function by inhibition of oxidative stress and apoptosis, thus providing a beneficial effect on the prevention of DNR-induced cardiotoxicity.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Antibióticos Antineoplásicos/antagonistas & inibidores , Antibióticos Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Ácidos Cumáricos/uso terapêutico , Daunorrubicina/antagonistas & inibidores , Daunorrubicina/toxicidade , Cardiopatias/induzido quimicamente , Cardiopatias/prevenção & controle , Mitocôndrias/efeitos dos fármacos , Animais , Cardiopatias/patologia , Hemodinâmica , Masculino , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
20.
Sheng Li Xue Bao ; 66(3): 267-75, 2014 Jun 25.
Artigo em Zh | MEDLINE | ID: mdl-24964842

RESUMO

The study was designed to explore the alteration of intracellular calcium concentration ([Ca²âº]i), induced by transient receptor potential melastatin 8 (TRPM8) channel-specific agonist menthol, in pulmonary arterial smooth muscle cells (PASMCs) between control and pulmonary hypertensive (PH) rats. PH rat models were established by means of chronic hypoxia (CH) and monocrotaline (MCT) injection, respectively. PASMCs from control and PH rats were cultured. The change of [Ca²âº]i in PASMCs induced by menthol, and the effect of TRPM8 channel-specific antagonist BCTC on the change of [Ca²âº]i, were observed. Cellular localization of TRPM8 was examined by using immunohistochemistry. Results showed that menthol increased [Ca²âº]i in the control PASMCs both in Ca²âº -normal and Ca²âº - free Tyrode's solutions, and at the same time BCTC could inhibit these two kinds of elevations. Compared with the control group, elevations of [Ca²âº]i were decreased notably in CH- and MCT-pretreated PASMCs superfused with 2 mmol/L Ca²âº - or 0 Ca²âº -Tyrode's solutions. Immunohistochemical localization experiments showed that the whole PASMCs were dyed brown except for the nucleus. This study verified that TRPM8 exists both in membrane and sarcoplasmic reticulum of PASMCs. In addition, CH- and MCT-pretreatment could independently down-regulate the Ca²âº influx and Ca²âº release mediated by TRPM8 channel.


Assuntos
Cálcio/metabolismo , Mentol/farmacologia , Miócitos de Músculo Liso/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Células Cultivadas , Miócitos de Músculo Liso/efeitos dos fármacos , Artéria Pulmonar/citologia , Ratos , Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA