Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Inorg Chem ; 62(43): 17745-17755, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37856879

RESUMO

The open NASICON framework and high reversible capacity enable Na3V2(PO4)3 (NVP) to be a highly promising cathode candidate for sodium-ion batteries (SIBs). Nevertheless, the unsatisfied cyclic stability and degraded rate capability at low temperatures due to sluggish ionic migration and poor conductivity become the main challenges. Herein, excellent sodium storage performance for the NVP cathode can be received by partial potassium (K) substitution and multiwalled carbon nanotube (MWCNT) cross-linking to modify the ionic diffusion and electronic conductivity. Consequently, the as-fabricated Na3-xKxV2(PO4)3@C/MWCNT can maintain a capacity retention of 79.4% after 2000 cycles at 20 C. Moreover, the electrochemical tests at -20 °C manifest that the designed electrode can deliver 89.7, 73.5, and 64.8% charge of states, respectively, at 1, 2, and 3 C, accompanied with a capacity retention of 84.3% after 500 cycles at 20 C. Generally, the improved electronic conductivity and modified ionic diffusion kinetics resulting from K doping and MWCNT interconnecting endows the resultant Na3-xKxV2(PO4)3@C/MWCNT with modified electrochemical polarization and improved redox reversibility, contributing to superior performance at low temperatures. Generally, this study highlights the potential of alien substitution and carbon hybridization to improve the NASICON-type cathodes toward high-performance SIBs, especially at low temperatures.

2.
Opt Express ; 30(5): 7137-7146, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299483

RESUMO

Computer-generated holography typically generates terahertz (THz) holographic images with a pixel size larger than wavelength. We propose a multi-foci metalens model to reconstruct THz holographic images with subwavelength resolution. The designed devices are realized based on dielectric metasurfaces consisting of silicon micropillars with spatially variant orientations. By exploiting quasi-continuous profile of focal points as the pixels of a holographic image, a metalens can reconstruct a high-resolution target image on its focal plane. The effects of size and pitch of each sub-diffraction focal point on imaging quality and pixel resolution are discussed. The intensity distribution at each focal point indicates that the reconstructed images have subwavelength resolution. In comparison with conventional hologram designs, this design method can be used to reconstruct THz holographic images with subwavelength resolution, which have potential applications in THz communication, information security and anti-counterfeiting.

3.
Appl Opt ; 61(11): 3218-3222, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35471300

RESUMO

We present a tunable plasmon-induced transparency (PIT) metamaterial for manipulating the group velocity of terahertz (THz) waves. The metamaterial is composed of metal split rings and photoconductive silicon strips. The strong PIT effect with slowing down THz waves is generated by the bright-bright mode coupling between the high-order plasmon mode and the lattice surface mode via electromagnetic destructive interference. By varying the conductivity of silicon strips, the group slowing performance is dynamically tunable. The group delay can achieve beyond 20 ps with the group index as high as 592, showing the promising application for THz signal manipulation.

4.
Chem Soc Rev ; 50(19): 10983-11031, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34617521

RESUMO

Elemental two-dimensional (2D) materials have emerged as promising candidates for energy and catalysis applications due to their unique physical, chemical, and electronic properties. These materials are advantageous in offering massive surface-to-volume ratios, favorable transport properties, intriguing physicochemical properties, and confinement effects resulting from the 2D ultrathin structure. In this review, we focus on the recent advances in emerging energy and catalysis applications based on beyond-graphene elemental 2D materials. First, we briefly introduce the general classification, structure, and properties of elemental 2D materials and the new advances in material preparation. We then discuss various applications in energy harvesting and storage, including solar cells, piezoelectric and triboelectric nanogenerators, thermoelectric devices, batteries, and supercapacitors. We further discuss the explorations of beyond-graphene elemental 2D materials for electrocatalysis, photocatalysis, and heterogeneous catalysis. Finally, the challenges and perspectives for the future development of elemental 2D materials in energy and catalysis are discussed.

5.
Nano Lett ; 21(5): 2081-2087, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33630607

RESUMO

Three-dimensional (3D) light fields with spatially inhomogeneous polarization and intensity distributions play an increasingly important role in photonics due to their peculiar optical features and extra degrees of freedom for carrying information. However, it is very challenging to simultaneously control the intensity profile and polarization profile in an arbitrary manner. Here we experimentally demonstrate a metalens that can focus light into an arbitrarily shaped focal curve with a predefined polarization distribution. The efficacy of this approach is exemplified through the demonstration of focused curves in 3D space ranging from simple shapes such as a circle to topologically nontrivial objects such as a 3D knot with controlled local polarization states. This powerful control of the light field would be technically challenging with their conventional counterparts. Our demonstration may find applications in beam engineering and integration optics.

6.
Opt Lett ; 45(13): 3506-3509, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630883

RESUMO

We propose a reflective terahertz (THz) metalens with four focal points for polarization detection of THz beams. The metalens is composed of Z-shaped resonators with spatially variant orientations, a reflective gold layer, and a dielectric spacer between them. The polarization states of the focal points include left circular polarization, right circular polarization, an incident polarization state, and a polarization state whose major axis is rotated π/4 in comparison with that of the incident polarization. The handedness, ellipticity, and major axis of the polarization state can be determined based on the light intensities of the focal points. The uniqueness of the designed device renders this technique very attractive for applications in compact THz polarization detection and information processing.

7.
Appl Opt ; 59(24): 7179-7185, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32902480

RESUMO

We present a tunable plasmon-induced transparency (PIT) structure that is composed of dielectric grating and a graphene system to manipulate terahertz (THz) waves. The graphene system consists of a graphene sheet and a graphene ribbon layer, with a spacer between them. By exploiting the diffraction coupling of THz wave with dielectric grating, graphene plasmonic resonance is efficiently excited on both graphene sheet and graphene ribbons. This leads to the surface plasmon mode of the graphene sheet and the localized plasmon mode of the graphene ribbons. The coupling between the two-plasmon modes via near-field destructive interference generates a strong PIT effect with slowing the group velocity of THz waves. A group delay over 0.2 ps and group index beyond 170 can be achievable. The group slowing effect is dynamically tunable with varying the Fermi level of graphene. The work suggests a promising scheme for on-chip graphene slow-wave devices at the THz regime.

8.
Appl Opt ; 58(34): 9406-9410, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873532

RESUMO

We present, by simulations, a metastructured graphene/liquid crystal hybrid tuning terahertz perfect absorber that consists of graphene disk resonator arrays above a metallic layer separated with liquid crystal substrate. The liquid crystal refractive index and the graphene Fermi level are utilized to implement double-tuning operation to push the spectra scanning limit of the terahertz absorber. Our simulations demonstrate high performance of a near-linear broad tuning region and near-unity absorbance with wide incident angle and polarization independence. The range of the resonant frequency scan is notably enlarged at a spectral ratio of as high as Δf/f=50% while ensuring absorbance beyond 90%. Such graphene/liquid crystal hybrid tuning scheme would be preferable to push the working-band limit of terahertz perfect absorbers.

9.
Chem Soc Rev ; 47(19): 7203-7212, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30118130

RESUMO

Tellurium (Te) has a trigonal crystal lattice with inherent structural anisotropy. Te is multifunctional, e.g., semiconducting, photoconductive, thermoelectric, piezoelectric, etc., for applications in electronics, sensors, optoelectronics, and energy devices. Due to the inherent structural anisotropy, previously reported synthetic methods predominantly yield one-dimensional (1D) Te nanostructures. Much less is known about 2D Te nanostructures, their processing schemes, and their material properties. This review focuses on the synthesis and morphology control of emerging 2D tellurene and summarizes the latest developments in understanding the fundamental properties of monolayer and few-layer tellurene, as well as the recent advances in demonstrating prototypical tellurene devices. Finally, the prospects for future research and application opportunities as well as the accompanying challenges of 2D tellurene are summarized and highlighted.

10.
Stem Cells ; 33(11): 3165-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26086534

RESUMO

Embryonic stem cells (ESCs) represent a promising cell source for regenerative medicine. Intensive research over the past 2 decades has led to the feasibility of using ESC-differentiated cells (ESC-DCs) in regenerative medicine. However, increasing evidence indicates that ESC-DCs generated by current differentiation methods may not have equivalent cellular functions to their in vivo counterparts. Recent studies have revealed that both human and mouse ESCs as well as some types of ESC-DCs lack or have attenuated innate immune responses to a wide range of infectious agents. These findings raise important concerns for their therapeutic applications since ESC-DCs, when implanted to a wound site of a patient, where they would likely be exposed to pathogens and inflammatory cytokines. Understanding whether an attenuated immune response is beneficial or harmful to the interaction between host and grafted cells becomes an important issue for ESC-based therapy. A substantial amount of recent evidence has demonstrated that the lack of innate antiviral responses is a common feature to ESCs and other types of pluripotent cells. This has led to the hypothesis that mammals may have adapted different antiviral mechanisms at different stages of organismal development. The underdeveloped innate immunity represents a unique and uncharacterized property of ESCs that may have important implications in developmental biology, immunology, and in regenerative medicine.


Assuntos
Biologia do Desenvolvimento/tendências , Células-Tronco Embrionárias/imunologia , Imunidade Inata/imunologia , Medicina Regenerativa/tendências , Animais , Diferenciação Celular/imunologia , Humanos , Células-Tronco Pluripotentes/imunologia
11.
J Biol Chem ; 289(36): 25186-98, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24966329

RESUMO

We have recently reported that mouse embryonic stem cells (mESCs) are deficient in expressing type I interferons (IFNs) in response to viral infection and synthetic viral RNA analogs (Wang, R., Wang, J., Paul, A. M., Acharya, D., Bai, F., Huang, F., and Guo, Y. L. (2013) J. Biol. Chem. 288, 15926-15936). Here, we report that mESCs are able to respond to type I IFNs, express IFN-stimulated genes, and mediate the antiviral effect of type I IFNs against La Crosse virus and chikungunya virus. The major signaling components in the IFN pathway are expressed in mESCs. Therefore, the basic molecular mechanisms that mediate the effects of type I IFNs are functional in mESCs; however, these mechanisms may not yet be fully developed as mESCs express lower levels of IFN-stimulated genes and display weaker antiviral activity in response to type I IFNs when compared with fibroblasts. Further analysis demonstrated that type I IFNs do not affect the stem cell state of mESCs. We conclude that mESCs are deficient in type I IFN expression, but they can respond to and mediate the cellular effects of type I IFNs. These findings represent unique and uncharacterized properties of mESCs and are important for understanding innate immunity development and ESC physiology.


Assuntos
Antivirais/imunologia , Células-Tronco Embrionárias/imunologia , Fibroblastos/imunologia , Interferon Tipo I/imunologia , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Células Cultivadas , Vírus Chikungunya/imunologia , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/virologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Imunidade Inata/imunologia , Interferon Tipo I/metabolismo , Interferon Tipo I/farmacologia , Vírus La Crosse/imunologia , Vírus La Crosse/fisiologia , Camundongos , Microscopia Confocal , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Receptor de Interferon alfa e beta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitinas/genética , Ubiquitinas/imunologia , Ubiquitinas/metabolismo , Células Vero
12.
J Biol Chem ; 288(22): 15926-36, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23580653

RESUMO

Embryonic stem cells (ESCs) are considered to be a promising cell source for regenerative medicine because of their unlimited capacity for self-renewal and differentiation. However, little is known about the innate immunity in ESCs and ESC-derived cells. We investigated the responses of mouse (m)ESCs to three types of live viruses as follows: La Crosse virus, West Nile virus, and Sendai virus. Our results demonstrated mESCs were susceptible to viral infection, but they were unable to express type I interferons (IFNα and IFNß, IFNα/ß), which differ from fibroblasts (10T1/2 cells) that robustly express IFNα/ß upon viral infections. The failure of mESCs to express IFNα/ß was further demonstrated by treatment with polyIC, a synthetic viral dsRNA analog that strongly induced IFNα/ß in 10T1/2 cells. Although polyIC transiently inhibited the transcription of pluripotency markers, the stem cell morphology was not significantly affected. However, polyIC can induce dsRNA-activated protein kinase in mESCs, and this activation resulted in a strong inhibition of cell proliferation. We conclude that the cytosolic receptor dsRNA-activated protein kinase is functional, but the mechanisms that mediate type I IFN expression are deficient in mESCs. This conclusion is further supported by the findings that the major viral RNA receptors are either expressed at very low levels (TLR3 and MDA5) or may not be active (retinoic acid-inducible gene I) in mESCs.


Assuntos
Células-Tronco Embrionárias/metabolismo , Interferon-alfa/biossíntese , Interferon beta/biossíntese , Células-Tronco Pluripotentes/metabolismo , Infecções por Vírus de RNA/metabolismo , Vírus de RNA/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/imunologia , RNA Helicases DEAD-box/biossíntese , RNA Helicases DEAD-box/imunologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/imunologia , Células-Tronco Embrionárias/virologia , Humanos , Indutores de Interferon/farmacologia , Helicase IFIH1 Induzida por Interferon , Interferon-alfa/imunologia , Interferon beta/imunologia , Camundongos , Células-Tronco Pluripotentes/imunologia , Células-Tronco Pluripotentes/virologia , Poli I-C/farmacologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , RNA de Cadeia Dupla/imunologia , RNA de Cadeia Dupla/farmacologia , RNA Viral/imunologia , RNA Viral/farmacologia , Receptor 3 Toll-Like/biossíntese , Receptor 3 Toll-Like/imunologia , Transcrição Gênica/efeitos dos fármacos
13.
Nanomicro Lett ; 16(1): 250, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023812

RESUMO

This work reports the use of defect engineering and carbon supporting to achieve metal-doped phosphides with high activities and stabilities for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline media. Specifically, the nitrogen-doped carbon nanofiber-supported Ni-doped CoP3 with rich P defects (Pv·) on the carbon cloth (p-NiCoP/NCFs@CC) is synthesized through a plasma-assisted phosphorization method. The p-NiCoP/NCFs@CC is an efficient and stable catalyst for the HER and the OER. It only needs overpotentials of 107 and 306 mV to drive 100 mA cm-2 for the HER and the OER, respectively. Its catalytic activities are higher than those of other catalysts reported recently. The high activities of the p-NiCoP/NCFs@CC mainly arise from its peculiar structural features. The density functional theory calculation indicates that the Pv· richness, the Ni doping, and the carbon supporting can optimize the adsorption of the H atoms at the catalyst surface and promote the strong electronic couplings between the carbon nanofiber-supported p-NiCoP with the surface oxide layer formed during the OER process. This gives the p-NiCoP/NCFs@CC with the high activities for the HER and the OER. When used in alkaline water electrolyzers, the p-NiCoP/NCFs@CC shows the superior activity and excellent stability for overall water splitting.

14.
J Am Chem Soc ; 135(47): 17881-8, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24191645

RESUMO

Molybdenum disulfide (MoS2) has emerged as a promising electrocatalyst for catalyzing protons to hydrogen via the so-called hydrogen evolution reaction (HER). In order to enhance the HER activity, tremendous effort has been made to engineer MoS2 catalysts with either more active sites or higher conductivity. However, at present, synergistically structural and electronic modulations for HER still remain challenging. In this work, we demonstrate the successfully synergistic regulations of both structural and electronic benefits by controllable disorder engineering and simultaneous oxygen incorporation in MoS2 catalysts, leading to the dramatically enhanced HER activity. The disordered structure can offer abundant unsaturated sulfur atoms as active sites for HER, while the oxygen incorporation can effectively regulate the electronic structure and further improve the intrinsic conductivity. By means of controllable disorder engineering and oxygen incorporation, an optimized catalyst with a moderate degree of disorder was developed, exhibiting superior activity for electrocatalytic hydrogen evolution. In general, the optimized catalyst exhibits onset overpotential as low as 120 mV, accompanied by extremely large cathodic current density and excellent stability. This work will pave a new pathway for improving the electrocatalytic activity by synergistically structural and electronic modulations.

15.
Exp Cell Res ; 318(16): 2094-104, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22705123

RESUMO

Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs.


Assuntos
Corpos Embrioides/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Purinas/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo
16.
Sci Adv ; 9(47): eadj6675, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37992179

RESUMO

Generation and manipulation of three-dimensional (3D) optical polarization structures have received considerable interest because of their distinctive optical features and potential applications. However, the realization of multiple 3D polarization structures in a queue along the light propagation direction has not yet been reported. We propose and experimentally demonstrate a metalens to create longitudinally variable 3D polarization knots. A single metalens can simultaneously generate three distinct 3D polarization knots, which are indirectly validated with a rotating polarizer. The 3D polarization profiles are dynamically modulated by manipulating the linear polarization direction of the incident light. We further showcase the 3D image steganography with the generated 3D polarization structures. The ultrathin nature of metasurfaces and unique properties of the developed metalenses hold promise for lightweight polarization systems applicable to areas such as 3D image steganography and virtual reality.

17.
Light Sci Appl ; 12(1): 103, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142575

RESUMO

A lightweight and portable spectrometer is desirable for miniaturization and integration. The unprecedented capability of optical metasurfaces has shown much promise to perform such a task. We propose and experimentally demonstrate a compact high-resolution spectrometer with a multi-foci metalens. The novel metalens is designed based on wavelength and phase multiplexing, which can accurately map the wavelength information into its focal points located on the same plane. The measured wavelengths in the light spectra agree with simulation results upon the illumination of various incident light spectra. The uniqueness of this technique lies in the novel metalens that can simultaneously realize wavelength splitting and light focusing. The compactness and ultrathin nature of the metalens spectrometer render this technology have potential applications in on-chip integrated photonics where spectral analysis and information processing can be performed in a compact platform.

18.
J Clin Invest ; 133(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37317963

RESUMO

RAS mutations are among the most prevalent oncogenic drivers in cancers. RAS proteins propagate signals only when associated with cellular membranes as a consequence of lipid modifications that impact their trafficking. Here, we discovered that RAB27B, a RAB family small GTPase, controlled NRAS palmitoylation and trafficking to the plasma membrane, a localization required for activation. Our proteomic studies revealed RAB27B upregulation in CBL- or JAK2-mutated myeloid malignancies, and its expression correlated with poor prognosis in acute myeloid leukemias (AMLs). RAB27B depletion inhibited the growth of CBL-deficient or NRAS-mutant cell lines. Strikingly, Rab27b deficiency in mice abrogated mutant but not WT NRAS-mediated progenitor cell growth, ERK signaling, and NRAS palmitoylation. Further, Rab27b deficiency significantly reduced myelomonocytic leukemia development in vivo. Mechanistically, RAB27B interacted with ZDHHC9, a palmitoyl acyltransferase that modifies NRAS. By regulating palmitoylation, RAB27B controlled c-RAF/MEK/ERK signaling and affected leukemia development. Importantly, RAB27B depletion in primary human AMLs inhibited oncogenic NRAS signaling and leukemic growth. We further revealed a significant correlation between RAB27B expression and sensitivity to MEK inhibitors in AMLs. Thus, our studies presented a link between RAB proteins and fundamental aspects of RAS posttranslational modification and trafficking, highlighting future therapeutic strategies for RAS-driven cancers.


Assuntos
Leucemia Mieloide , Lipoilação , Humanos , Animais , Camundongos , Proteômica , Transdução de Sinais , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases
19.
ACS Nano ; 16(11): 17708-17728, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36354375

RESUMO

The piezoelectric effect has been widely observed in biological systems, and its applications in biomedical field are emerging. Recent advances of wearable and implantable biomedical devices bring promise as well as requirements for the piezoelectric materials building blocks. Owing to their biocompatibility, biosafety, and environmental sustainability, natural piezoelectric biomaterials are known as a promising candidate in this emerging field, with a potential to replace conventional piezoelectric ceramics and synthetic polymers. Herein, we provide a thorough review of recent progresses of research on five major types of piezoelectric biomaterials including amino acids, peptides, proteins, viruses, and polysaccharides. Our discussion focuses on their structure- and phase-related piezoelectric properties and fabrication strategies to achieve desired piezoelectric phases. We compare and analyze their piezoelectric performance and further introduce and comment on the approaches to improve their piezoelectric property. Representative biomedical applications of this group of functional biomaterials including energy harvesting, sensing, and tissue engineering are also discussed. We envision that molecular-level understanding of the piezoelectric effect, piezoelectric response improvement, and large-scale manufacturing are three main challenges as well as research and development opportunities in this promising interdisciplinary field.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Materiais Biocompatíveis/química , Polímeros/química , Aminoácidos/química , Proteínas
20.
Light Sci Appl ; 11(1): 302, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253356

RESUMO

Polarization as an important degree of freedom for light plays a key role in optics. Structured beams with controlled polarization profiles have diverse applications, such as information encoding, display, medical and biological imaging, and manipulation of microparticles. However, conventional polarization optics can only realize two-dimensional polarization structures in a transverse plane. The emergent ultrathin optical devices consisting of planar nanostructures, so-called metasurfaces, have shown much promise for polarization manipulation. Here we propose and experimentally demonstrate color-selective three-dimensional (3D) polarization structures with a single metasurface. The geometric metasurfaces are designed based on color and phase multiplexing and polarization rotation, creating various 3D polarization knots. Remarkably, different 3D polarization knots in the same observation region can be achieved by controlling the incident wavelengths, providing unprecedented polarization control with color information in 3D space. Our research findings may be of interest to many practical applications such as vector beam generation, virtual reality, volumetric displays, security, and anti-counterfeiting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA