Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Am Chem Soc ; 145(32): 18015-18021, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37551439

RESUMO

The development of chiral covalentorganic framework catalysts (CCOFs) to synthesize enantiopure organic compounds is crucial and highly desirable in synthetic chemistry. Photocatalytic asymmetric reactions based on CCOFs are eco-friendly and sustainable while they are still elaborate. In this work, we report a general bottom-up strategy to successfully synthesize several photoactive CCOFX (X = 1-5 and 1-Boc). The photoactive porphyrin building blocks are selected as knots and various secondary-amine-based chiral catalytic centers are immobilized on the pore walls of CCOFX through a rational design of benzoimidazole linkers. The porphyrin units act as light-harvesting antennae to generate photo-induced charge carriers for the activation of bromide during the photocatalytic asymmetric alkylation of aldehydes. Meanwhile, various aldehydes are activated by the chiral secondary amine to form the target products with a high yield (up to 97%) and ee value (up to 93%). The results significantly expand the scope to predesign CCOF photocatalysts for visible-light-driven asymmetric catalysis.

2.
J Am Chem Soc ; 145(14): 7837-7844, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36995993

RESUMO

As an important category of photochemical reactions, photocyclization is regarded as an ideal entry point for building intelligent photoresponsive materials. Herein, a series of aggregation-induced emission luminogens (AIEgens) with sensitive photoresponsive behavior are developed based on 2,3-diphenylbenzo[b]thiophene S,S-dioxide (DP-BTO), and the impacts of substituents with different electronic structures are investigated. The comprehensive experimental and computational characterizations reveal that their photoresponsive activity is resulted from triplet diradical-mediated intramolecular photocyclization, followed by dehydrogenation to yield stable polycyclic photoproducts. This photocyclization process is active in solution but suppressed in the solid state, and thus can act as a supplementary nonradiative decay channel for the excited state to contribute to AIE effect. Moreover, the generated triplet diradical intermediates upon light irradiation can effectively inhibit the growth of S. aureus, indicative of their promising application as antibacterial agents. This work provides an in-depth mechanistic description about the photocyclization of DP-BTO derivatives and furnishes a perspective on the correlation of photochemical decay and photophysical property.

3.
Angew Chem Int Ed Engl ; 62(44): e202311082, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37698088

RESUMO

We report an azide-functionalized cobaloxime proton-reduction catalyst covalently tethered into the Wurster-type covalent organic frameworks (COFs). The cobaloxime-modified COF photocatalysts exhibit enhanced photocatalytic activity for hydrogen evolution reaction (HER) in alcohol-containing solution with no presence of a typical sacrificial agent. The best performing cobaloxime-modified COF hybrid catalyzes hydrogen production with an average HER rate up to 38 µmol h-1 in ethanol/phosphate buffer solution under 4 h illumination. Ultrafast transient optical spectroscopy characterizations and charge carrier analysis reveal that the alcohol contents functioning as hole scavengers could be oxidized by the photogenerated holes of COFs to form aldehydes and protons. The consumption of the photogenerated holes thus suppresses exciton recombination of COFs and improves the ratio of free electrons that were effectively utilized to drive catalytic reaction for HER. This work demonstrates a great potential of COF-catalyzed HER using alcohol solvents as hole scavengers and provides an example toward realizing the accessibility to the scope of reaction conditions and a greener route for energy conversion.

4.
Nano Lett ; 21(13): 5813-5818, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34132552

RESUMO

Interaction of surface adsorbate vibration and intraband electron absorption in nanocrystals has been reported to affect the photophysical properties of both nanocrystals and surface adsorbates and may affect the performance of hybrid photocatalysts composed of semiconductor nanocrystals and molecular catalysts. Here, by combining ultrafast transient visible and IR spectroscopic measurements, we report the observation of Fano resonances between the intraband transition of the photogenerated electrons in CdS and CdSe nanocrystals and CO stretching vibrational modes of adsorbed molecular catalysts, [Fe2(cbdt)(CO)6] (FeFe; cbdt = 1-carboxyl-benzene-2,3-dithiolate), a molecular mimic for the active site of FeFe-hydrogenase. The occurrence of Fano resonances is independent of nanocrystal types (rods vs dots) or charge transfer character between the nanocrystal and FeFe, and is likely a general feature of nanocrystal and molecular catalyst hybrid systems. These results provide new insights into the fundamental interactions in these hybrid assemblies for artificial photosynthesis.


Assuntos
Nanopartículas , Pontos Quânticos , Catálise , Elétrons , Vibração
5.
J Am Chem Soc ; 141(43): 17245-17259, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31587555

RESUMO

Proton-coupled electron transfer (PCET) was studied in a series of tungsten hydride complexes with pendant pyridyl arms ([(PyCH2Cp)WH(CO)3], PyCH2Cp = pyridylmethylcyclopentadienyl), triggered by laser flash-generated RuIII-tris-bipyridine oxidants, in acetonitrile solution. The free energy dependence of the rate constant and the kinetic isotope effects (KIEs) showed that the PCET mechanism could be switched between concerted and the two stepwise PCET mechanisms (electron-first or proton-first) in a predictable fashion. Straightforward and general guidelines for how the relative rates of the different mechanisms depend on oxidant and base are presented. The rate of the concerted reaction should depend symmetrically on changes in oxidant and base strength, that is on the overall ΔG0PCET, and we argue that an "asynchronous" behavior would not be consistent with a model where the electron and proton tunnel from a common transition state. The observed rate constants and KIEs were examined as a function of hydrostatic pressure (1-2000 bar) and were found to exhibit qualitatively different dependence on pressure for different PCET mechanisms. This is discussed in terms of different volume profiles of the PCET mechanisms as well as enhanced proton tunneling for the concerted mechanism. The results allowed for assignment of the main mechanism operating in the different cases, which is one of the critical questions in PCET research. They also show how the rate of a PCET reaction will be affected very differently by changes of oxidant and base strength, depending on which mechanism dominates. This is of fundamental interest as well as of practical importance for rational design of, for example, catalysts for fuel cells and solar fuel formation, which operate in steps of PCET reactions. The mechanistic richness shown by this system illustrates that the specific mechanism is not intrinsic to a specific synthetic catalyst or enzyme active site but depends on the reaction conditions.

6.
Chemistry ; 25(47): 11135-11140, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31210385

RESUMO

[FeFe(Cl2 -bdt)(CO)6 ] (1; Cl2 -bdt=3,6-dichlorobenzene-1,2-dithiolate), inspired by the active site of FeFe-hydrogenase, shows a chemically reversible 2 e- reduction at -1.20 V versus the ferrocene/ferrocenium couple. The rigid and aromatic bdt bridging ligand lowers the reduction potential and stabilizes the reduced forms, compared with analogous complexes with aliphatic dithiolates; thus allowing details of the catalytic process to be characterized. Herein, time-resolved IR spectroscopy is used to provide kinetic and structural information on key catalytic intermediates. This includes the doubly reduced, protonated complex 1H- , which has not been previously identified experimentally. In addition, the first direct spectroscopic observation of the turnover process for a molecular H2 evolving catalyst is reported, allowing for straightforward determination of the turnover frequency.

7.
Inorg Chem ; 57(2): 768-776, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29297686

RESUMO

One-electron reduction and subsequent protonation of a biomimetic proton-reduction catalyst [FeFe(µ-pdt)(CO)6] (pdt = propanedithiolate), 1, were investigated by UV-vis and IR spectroscopy on a nano- to microsecond time scale. The study aimed to provide further insight into the proton-reduction cycle of this [FeFe]-hydrogenase model complex, which with its prototypical alkyldithiolate-bridged diiron core is widely employed as a molecular, precious metal-free catalyst for sustainable H2 generation. The one-electron-reduced catalyst was obtained transiently by electron transfer from photogenerated [Ru(dmb)3]+ in the absence of proton sources or in the presence of acids (dichloro- or trichloroacetic acid or tosylic acid). The reduced catalyst and its protonation product were observed in real time by UV-vis and IR spectroscopy, leading to their structural characterization and providing kinetic data on the electron and proton transfer reactions. 1 features an intact (µ2,κ2-pdt)(µ-H)Fe2 core in the reduced, 1-, and reduced-protonated states, 1H, in contrast to the Fe-S bond cleavage upon the reduction of [FeFe(bdt)(CO)6], 2, with a benzenedithiolate bridge. The driving-force dependence of the rate constants for the protonation of 1- (kpt = 7.0 × 105, 1.3 × 107, and 7.0 × 107 M-1 s-1 for the three acids used in this study) suggests a reorganization energy >1 eV and indicates that hydride complex 1H is formed by direct protonation of the Fe-Fe bond. The protonation of 1- is sufficiently fast even with the weaker acids, which excludes a rate-limiting role in light-driven H2 formation under typical conditions.

8.
Chem Sci ; 10(21): 5582-5588, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31293742

RESUMO

Electron and proton transfer reactions of diiron complexes [Fe2adt(CO)6] (1) and [Fe2adt(CO)4(PMe3)2] (4), with the biomimetic azadithiolate (adt) bridging ligand, have been investigated by real-time IR- and UV-vis-spectroscopic observation to elucidate the role of the adt-N as a potential proton shuttle in catalytic H2 formation. Protonation of the one-electron reduced complex, 1- , occurs on the adt-N yielding 1H and the same species is obtained by one-electron reduction of 1H+ . The preference for ligand vs. metal protonation in the Fe2(i,0) state is presumably kinetic but no evidence for tautomerization of 1H to the hydride 1Hy was observed. This shows that the adt ligand does not work as a proton relay in the formation of hydride intermediates in the reduced catalyst. A hydride intermediate 1HHy+ is formed only by protonation of 1H with stronger acid. Adt protonation results in reduction of the catalyst at much less negative potential, but subsequent protonation of the metal centers is not slowed down, as would be expected according to the decrease in basicity. Thus, the adtH+ complex retains a high turnover frequency at the lowered overpotential. Instead of proton shuttling, we propose that this gain in catalytic performance compared to the propyldithiolate analogue might be rationalized in terms of lower reorganization energy for hydride formation with bulk acid upon adt protonation.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 170: 198-205, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27450118

RESUMO

An imidazolium-modified pyrene derivative, IPy, was used for ratiometric detection of heparin, and its complex with heparin was used for reversed ratiometric detection of protamine in both aqueous solution and serum samples. The cationic fluorescent probe could interact with anionic heparin via electrostatic interaction to bring about blue-to-green fluorescence changes as monomer emission significantly decreases and excimer increases. The binary combination of IPy and heparin could be further used for green-to-blue detection of protamine since heparin prefers to bind to protamine instead of the probe due to its stronger affinity with protamine. The cationic probe shows high sensitivity to heparin with a low detection limit of 8.5nM (153ng/mL) and its combination with heparin displays high sensitivity to protamine with a detection limit as low as 15.4nM (107.8ng/mL) according to the 3σ IUPAC criteria. Moreover, both sensing processes are fast and can be performed in serum solutions, indicating possibility for practical applications.


Assuntos
Corantes Fluorescentes/química , Heparina/análise , Protaminas/análise , Pirenos/química , Espectrometria de Fluorescência/métodos , Água/química , Soluções , Espectrofotometria Ultravioleta
10.
ACS Appl Mater Interfaces ; 6(18): 16156-65, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25188720

RESUMO

Lanthanides are valuable nonrenewable resources and widely used in a variety of industries. Detection and identification of lanthanide ions are in high demand but challenging because of the similarity among lanthanide ions. In the present work, a fluorescent sensor array of three cationic bispyrene derivatives mixed with anionic surfactant assemblies was developed. The sensor array exhibits cross-reactive responses to lanthanide ions when tested in aqueous solution. The combination of fluorescence variations at both monomer and excimer emission of each of the bispyrene sensor elements provides a six-signal recognition pattern for lanthanide ions. Principle component analysis illustrates that the sensor array could at least identify 6 of the 14 similar lanthanide ions including La(3+), Pr(3+), Nd(3+), Eu(3+), Ho(3+), and Er(3+). UV-vis absorption measurements rule out the possibility of binding lanthanides with fluorophores. Fluorescence titration experiments in both cationic and neutral surfactant aqueous solutions reveal that the three fluorophores show slight fluorescence responses to the lanthanide ions, indicating that electrostatic attraction between lanthanide ions and anionic surfactant plays an important role in the sensing behavior of the sensor array. Control experiments with divalent metal ions find no cross-reactive responses, suggesting that the stronger electrostatic interaction with trivalent lanthanide ions is responsible for the multiple fluorescence responses.

11.
ACS Appl Mater Interfaces ; 6(1): 49-56, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24328087

RESUMO

A dansyl-functionalized fluorescent film sensor was specially designed and prepared by assembling dansyl on a glass plate surface via a long flexible spacer containing oligo(oxyethylene) and amine units. The chemical attachment of dansyl moieties on the surface was verified by contact angle, XPS, and fluorescence measurements. Solvent effect examination revealed that the polarity-sensitivity was retained for the surface-confined dansyl moieties. Fluorescence quenching studies in water declared that the dansyl-functionalized SAM possesses a higher sensitivity towards Hg(2+) and Cu(2+) than the other tested divalent metal ions including Zn(2+), Cd(2+), Co(2+), and Pb(2+). Further measurements of the fluorescence responses of the film towards Cu(2+) and Hg(2+) in three solvents including water, acetonitrile, and THF evidenced that the present film exhibits cross-reactive responses to these two metal ions. The combined signals from the three solvents provide a recognition pattern for both metal ions at a certain concentration and realize the identification between Hg(2+) and Cu(2+). Moreover, using principle component analysis, this method can be extended to identify metal ions that are hard to detect by the film sensor in water such as Co(2+) and Ni(2+).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA