Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nanotechnology ; 34(14)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36621847

RESUMO

Copper-based halide perovskites have shown great potential in lighting and photodetection due to their excellent photoelectric properties, good stability and lead-free nature. However, as an important piece of copper-based perovskites, the synthesis and application of RbCu2I3have never been reported. Here, we demonstrate the synthesis of high-quality RbCu2I3microwires (MWs) by a fast-cooling hot saturated solution method. The prepared MWs exhibit an orthorhombic structure with a smooth surface. Optical measurements show the RbCu2I3MWs have a sharp ultraviolet absorption edge with 3.63 eV optical band gap and ultra-large stokes shift (300 nm) in photoluminescence. The subsequent photodetector based on a single RbCu2I3MW shows excellent ultraviolet detection performance. Under the 340 nm illumination, the device shows a specific detectivity of 5.0 × 109Jones and a responsivity of 380 mA·W-1. The synthesis method and physical properties of RbCu2I3could be a guide to the future optoelectronic application of the new material.

2.
Small ; 17(43): e2101359, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34121319

RESUMO

Colloidal all-inorganic perovskites nanocrystals (NCs) have emerged as a promising material for display and lighting due to their excellent optical properties. However, blue emissive NCs usually suffer from low photoluminescence quantum yields (PLQYs) and poor stability, rendering them the bottleneck for full-color all-perovskite optoelectronic applications. Herein, a facile approach is reported to enhance the emission efficiency and stability of blue emissive perovskite nano-structures via surface passivation with potassium bromide. By adding potassium oleate and excess PbBr2 to the perovskite precursor solutions, potassium bromide-passivated (KBr-passivated) blue-emitting (≈450 nm) CsPbBr3 nanoplatelets (NPLs) is successfully synthesized with a respectably high PLQY of 87%. In sharp contrast to most reported perovskite NPLs, no shifting in emission wavelength is observed in these passivated NPLs even after prolonged exposures to intense irradiations and elevated temperature, clearly revealing their excellent photo- and thermal-stabilities. The enhancements are attributed to the formation of K-Br bonding on the surface which suppresses ion migration and formation of Br-vacancies, thus improving both the PL emission and stability of CsPbBr3 NPLs. Furthermore, all-perovskite white light-emitting diodes (WLEDs) are successfully constructed, suggesting that the proposed KBr-passivated strategy can promote the development of the perovskite family for a wider range of optoelectronic applications.

3.
Small ; 17(17): e2007557, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33733600

RESUMO

Hydrogen evolution reaction (HER) is a key step for electrochemical energy conversion and storage. Developing well defined nanostructures as noble-metal-free electrocatalysts for HER is promising for the application of hydrogen technology. Herein, it is reported that 3D porous hierarchical CoNiP/Cox P multi-phase heterostructure on Ni foam via an electrodeposition method followed by phosphorization exhibits ultra-highly catalytic activity for HER. The optimized CoNiP/Cox P multi-phase heterostructure achieves an excellent HER performance with an ultralow overpotential of 36 mV at 10 mA cm-2 , superior to commercial Pt/C. Importantly, the multi-phase heterostructure shows exceptional stability as confirmed by the long-term potential cycles (30,000 cycles) and extended electrocatalysis (up to 500 h) in alkaline solution and natural seawater. Experimental characterizations and DFT calculations demonstrate that the strong electronic interaction at the heterointerface of CoNiP/CoP is achieved via the electron transfer from CoNiP to the heterointerface, which directly promotes the dissociation of water at heterointerface and desorption of hydrogen on CoNiP. These findings may provide deep understanding on the HER mechanism of heterostructure electrocatalysts and guidance on the design of earth-abundant, cost-effective electrocatalysts with superior HER activity for practical applications.

4.
Molecules ; 24(11)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174356

RESUMO

Solar cells made of hybrid organic-inorganic perovskite (HOIP) materials have attracted ever-increasing attention due to their high efficiency and easy fabrication. However, issues regarding their poor stability remain a challenge for practical applications. Engineering the composition and structure of HOIP can effectively enhance the thermal stability and improve the power conversion efficiency (PCE). In this work, mixed two-dimensional (2D) HOIPs are systematically investigated for solar-power harvesting using first-principles calculations. We find that their electronic properties depend strongly on the mixed atoms (Cs, Rb, Ge and Pb) and the formation energy is related to the HOIP's composition, where the atoms are more easily mixed in SnI-2D-HOIPs due to low formation energy at the same composition ratio. We further show that optimal solar energy harvesting can be achieved on the solar cells composed of mixed SnI-2D-HOIPs because of reduced bandgaps, enhanced mobility and improved stability. Importantly, we find that the mixed atoms (Cs, Rb, Ge and Pb) with the appropriate composition ratios can effectively enhance the solar-to-power efficiency and show greatly improved resistance to moisture. The findings demonstrate that mixed 2D-HOIPs can replace the bulk HOIPs or pure 2D-HOIPs for applications into solar cells with high efficiency and stability.


Assuntos
Compostos de Cálcio/química , Compostos Inorgânicos/química , Compostos Orgânicos/química , Óxidos/química , Energia Solar , Titânio/química , Fontes de Energia Elétrica , Eletrônica , Luz Solar
5.
Opt Lett ; 41(4): 685-8, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26872163

RESUMO

Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

6.
Nanotechnology ; 27(22): 22LT01, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27109699

RESUMO

Black-colored ZnO nanowires have been prepared in a metal-organic chemical vapor deposition system by employing a relatively low growth temperature and oxygen-deficient conditions. X-ray photoelectron spectroscopy reveals the incorporation of carbon into the nanowires. The photocatalytic hydrogen evolution activity of the black-colored ZnO nanowires is over 2.5 times larger than that of the pristine ZnO nanowires under simulated solar illumination conditions, and the enhanced photocatalytic activity can be attributed to the higher absorption of visible light by the black color and better carrier separation at the ZnO/carbon interface.

7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(7): 1787-90, 2015 Jul.
Artigo em Zh | MEDLINE | ID: mdl-26717726

RESUMO

The main purpose of this paper is to investigate the optical properties of p-type ZnO film based on P doping. ZnO film was grown by Atomic layer deposition (ALD) on InP subsrate in this experiment, and phosphorus diffused into ZnO lattice by annealing treatment at different temperature (500, 700 °C). The optical properties of samples were investigated by photoluminescence (PL) spectroscopy, which indicated that the annealing temperature is the important factor influencing the phosphorus diffusion doping. The low-temperature PL spectra of the sample which annealed at 700 °C for 1 h exhibited acceptor related emission peaks located at 3.351, 3.311, 3.246 and 3.177 eV, which were attributed to A °X, FA, DAP and DA-1LO, respectively. The acceptor binding energy is estimated to be about 122 meV, which is agreed with the theoretic values in phosphorus-doped ZnO films. In this paper, through thermal diffusion method to realize the p-type doped ZnO thin films, it solved the main problems which limited the development of ZnO based optoelectronic devices, and has an important significance for the development of the ZnO semiconductor materials and ZnO based photoelectric device.

8.
Opt Lett ; 39(3): 422-5, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24487830

RESUMO

Well-aligned ZnO nanowires have been prepared on sapphire substrate, and structural and optical characterizations indicate that the nanowires are of single crystalline and have relatively high luminescent quality. By employing the ZnO nanowires as an active layer, p-Zn0.68Mg0.32O:N/n-ZnO nanowire heterostructure light-emitting devices (LEDs) have been fabricated. The LEDs show pure ultraviolet emission when a forward bias is applied, while the deep-level emission frequently observed in ZnO p-n junctions is almost totally invisible. The devices can work continuously for over 27 h under the injection of a current density of 500 mA/cm2, indicating their good stability.

9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(12): 3197-200, 2014 Dec.
Artigo em Zh | MEDLINE | ID: mdl-25881407

RESUMO

In the present paper, Mg(x)Zn(1-x)O nanofibers with different doping concentration were prepared by atom layer deposition (ALD) using polyvinyl pyrrolidone (PVP) nanofibers as template, which were synthesized by electrospinning. The influence of different Mg doping concentration on the structure and optical properties of composite nanofibers was investigated. The samples were characterized by field emission scanning electron microscopy (FESEM), ultraviolet visible (UV-Vis) absorption spectroscopy and photoluminescence (PL) spectra. The doping of Mg did not change the morphologies of ZnO nanofibers, the morphologies of all the samples were very similar while the diameter of Mg(x)Zn(1-x)O-PVP composite nanofibers became larger after doping. With the increase in the Mg doping concentration, the absorption edge shifted to larger energy side, revealing the band gap tenability of Mg(x)Zn(1-x)O nanofibers. Meanwhile, a significant blue shift of the UV emission peak from 377 to 362 nm was observed in PL spectra. Compared with ZnO-PVP composite nanofibers, the UV emission intensity of Mg(x)Zn(1-x)O-PVP composite nanofibers was much stronger. Component control Mg(x)Zn(1-x)O nanofibers can be synthesized by this method. The doping of Mg elements in ZnO can effectively improve the band gap of ZnO-PVP nanofibers and the intensity of UV emission.

10.
ACS Appl Mater Interfaces ; 16(8): 10398-10406, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38380978

RESUMO

The rapid evolution of the Internet of Things has engendered increased requirements for low-cost, self-powered UV photodetectors. Herein, high-performance self-driven UV photodetectors are fabricated by designing asymmetric metal-semiconductor-metal structures on the high-quality large-area CsCu2I3 microwire arrays. The asymmetrical depletion region doubles the photocurrent and response speed compared to the symmetric structure device, leading to a high responsivity of 233 mA/W to 355 nm radiation. Notably, at 0 V bias, the asymmetric device produces an open-circuit voltage of 356 mV and drives to a short-circuit current of 372 pA; meanwhile, the switch ratio (Iph/Idark) reaches up to 103, indicating its excellent potential for detecting weak light. Furthermore, the device maintains stable responses throughout 10000 UV-light switch cycles, with negligible degradation even after 90-day storage in air. Our work establishes that CsCu2I3 is a good candidate for self-powered UV detection and thoroughly demonstrates its potential as a passive device.

11.
Adv Mater ; 35(25): e2300015, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36934413

RESUMO

High-efficiency electromagnetic (EM) functional materials are the core building block of high-performance EM absorbers and devices, and they are indispensable in various fields ranging from industrial manufacture to daily life, or even from national defense security to space exploration. Searching for high-efficiency EM functional materials and realizing high-performance EM devices remain great challenges. Herein, a simple solution-process is developed to rapidly grow gram-scale organic-inorganic (MAPbX3 , X = Cl, Br, I) perovskite microcrystals. They exhibit excellent EM response in multi bands covering microwaves, visible light, and X-rays. Among them, outstanding microwave absorption performance with multiple absorption bands can be achieved, and their intrinsic EM properties can be tuned by adjusting polar group. An ultra-wideband bandpass filter with high suppression level of -71.8 dB in the stopband in the GHz band, self-powered photodetectors with tunable broadband or narrowband photoresponse in the visible-light band, and a self-powered X-ray detector with high sensitivity of 3560 µC Gyair -1  cm-2  in the X-ray band are designed and realized by precisely regulating the physical features of perovskite and designing a novel planar device structure. These findings open a door toward developing high-efficiency EM functional materials for realizing high-performance EM absorbers and devices.

12.
Adv Mater ; 35(21): e2300632, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36916201

RESUMO

Stacked 2D perovskites provide more possibilities for next generation photodetector with more new features. Compared with its excellent optoelectronic properties, the good dielectric performance of metal halide perovskite rarely comes into notice. Here, a bifunctional perovskite based photovoltaic detector capable of two wavelength demultiplexing is demonstrated. In the Black Phosphorus/Perovskite/MoS2 structured photodetector, the comprehensive utilization of the photosensitive and dielectric properties of 2D perovskite allows the device to work in different modes. The device shows normal continuous photoresponse under 405 nm, while it shows a transient spike response to visible light with longer wavelengths. The linear dynamic range, rise/decay time, and self-powered responsivity under 405 nm can reach 100, 38 µs/50 µs, and 17.7 mA W-1 , respectively. It is demonstrated that the transient spike photocurrent with long wavelength exposure is related to the illumination intensity and can coexist with normal photoresponse. Two waveband-dependent signals can be identified and used to reflect more information simultaneously. This work provides a new strategy for multispectral detection and demultiplexing, which can be used to improve data transfer rates and encrypted communications. This work mode can inspire more multispectral photodetectors with different stacked 2D materials, especially to the optoelectronic application of the wide bandgap, high dielectric photosensitive materials.

13.
Light Sci Appl ; 12(1): 286, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008796

RESUMO

Highly efficient multi-dimensional data storage and extraction are two primary ends for the design and fabrication of emerging optical materials. Although metasurfaces show great potential in information storage due to their modulation for different degrees of freedom of light, a compact and efficient detector for relevant multi-dimensional data retrieval is still a challenge, especially in complex environments. Here, we demonstrate a multi-dimensional image storage and retrieval process by using a dual-color metasurface and a double-layer integrated perovskite single-pixel detector (DIP-SPD). Benefitting from the photoelectric response characteristics of the FAPbBr2.4I0.6 and FAPbI3 films and their stacked structure, our filter-free DIP-SPD can accurately reconstruct different colorful images stored in a metasurface within a single-round measurement, even in complex environments with scattering media or strong background noise. Our work not only provides a compact, filter-free, and noise-robust detector for colorful image extraction in a metasurface, but also paves the way for color imaging application of perovskite-like bandgap tunable materials.

14.
Sensors (Basel) ; 12(2): 1280-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438709

RESUMO

To increase the responsivity is one of the vital issues for a photodetector. By employing ZnO as a representative material of ultraviolet photodetectors and Si as a representative material of visible photodetectors, an impact ionization process, in which additional carriers can be generated in an insulating layer at a relatively large electric field, has been employed to increase the responsivity of a semiconductor photodetector. It is found that the responsivity of the photodetectors can be enhanced by tens of times via this impact ionization process. The results reported in this paper provide a general route to enhance the responsivity of a photodetector, thus may represent a step towards high-performance photodetectors.


Assuntos
Íons Pesados , Fotometria/instrumentação , Semicondutores , Transdutores , Óxido de Zinco/química , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Sensibilidade e Especificidade , Óxido de Zinco/efeitos da radiação
15.
ACS Nano ; 16(8): 13199-13210, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35938940

RESUMO

Aqueous electrochromic battery (ECB) is a multifunctional technology that shows great potential in various applications including energy-saving buildings and wearable batteries with visible energy levels. However, owing to the mismatch between traditional electrochromic materials and the electrolyte, aqueous ECBs generally exhibit poor cycling stability which bottlenecks their practical commercialization. Herein, we present an ultrastable electrochromic system composed of lithium titanate (Li4Ti5O12, LTO) electrode and Al3+/Zn2+ hybrid electrolyte. The fully compatible system exhibits excellent redox reaction reversibility, thus leading to extremely high cycling stabilities in optical contrast (12 500 cycles with unnoticeable degradation) and energy storage (4000 cycles with 82.6% retention of capacity), superior electrochromic performances including high optical contrast (∼74.73%) and fast responses (4.35 s/7.65 s for bleaching/coloring), as well as excellent discharge areal capacity of 151.94 mAh m-2. The extraordinary cycling stability can be attributed to the robust [TiO6] octahedral frameworks which remain chemically active even upon the gradual substitution of Li+ with Al3+ in LTO over multiple operation cycles. The high-performance electrochromic system demonstrated here not only makes the commercialization of low-cost, high-safety aqueous-based electrochromic devices possible but also provides potential design guidance for LTO-related materials used in aqueous-based energy storage devices.

16.
Artigo em Inglês | MEDLINE | ID: mdl-36315112

RESUMO

Lead-free perovskite has attracted great attention in realizing high-performance optoelectronic devices due to their excellent atmospheric stability and nontoxic characteristics. Although a pronounced ion migration effect has been observed in this new class of materials, its potential in enhancing the overall device performance is yet to be fully explored. In this work, we studied the effect of ion migrations on the carrier transport behavior and found that the recoverable migration process can contribute to enhancing the on/off ratio in a lead-free CsCu2I3 single-crystal microrod-based photodetector. In detail, we synthesized CsCu2I3 single-crystal microrods via an in-plane self-assembly supersaturated crystallization approach. These microrods with well-defined morphologies were then used to construct ultraviolet (UV)-band photodetectors, which outperform most reported lead-free perovskite photodetectors based on individual single crystals. Simultaneously, ion migration can result in asymmetric band bending in the two-terminal device, as confirmed by surface potential profiling with Kelvin probe force microscopy (KPFM). Such an effect can be harnessed to increase the on/off ratio by almost an order of magnitude. Furthermore, the lead-free CsCu2I3 single crystal exhibits excellent thermal and air stabilities. These findings demonstrate that the CsCu2I3 single-crystal microrods can be used in stable and efficient photodetection, and the ion migration effect can potentially be utilized for improving the optoelectronic performance of lead-free devices.

17.
ACS Appl Mater Interfaces ; 13(41): 49058-49065, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34633792

RESUMO

With many advantages including superior color saturation and efficiency, quantum dot light-emitting diodes (QLEDs) are considered a promising candidate for the next-generation displays. Emission uniformity over the entire device area is a critical factor to the overall performance and reliability of QLEDs. In this work, we performed a thorough study on the origin of dark spots commonly observed in operating QLEDs and developed a strategy to eliminate these defects. Using advanced cross section fabrication and imaging techniques, we discovered the occurrence of voids in the organic hole transport layer and directly correlated them to the observed emission nonuniformity. Further investigations revealed that these voids are thermal damages induced during the subsequent thermal deposition of other functional layers and can act as leakage paths in the device. By inserting a thermo-tolerant 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile (HATCN) interlayer with an optimized thickness, the thermally induced dark spots can be completely suppressed, leading to a current efficiency increase by 18%. We further demonstrated that such a thermal passivation strategy can work universally for various types of organic layers with low thermal stability. Our findings here provide important guidance in enhancing the performances and reliability of QLEDs and also other sandwich-structured devices via the passivation of heat-sensitive layers.

18.
ACS Appl Mater Interfaces ; 13(47): 56630-56637, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794311

RESUMO

Interfacial quality of functional layers plays an important role in the carrier transport of sandwich-structured devices. Although the suppression of interface states is crucial to the overall device performance, our understanding on their formation and annihilation mechanism via direct characterization is still quite limited. Here, we present a thorough study on the interface states present in the electron transport layer (ETL) of blue quantum dot (QD) light-emitting diodes (QLEDs). A ZnO/ZnMgO bilayer ETL is adopted to enhance the electron injection into blue QDs. By probing the ETL band structure with photoelectron spectroscopy, we discover that substantial band bending exists at the ZnO/ZnMgO interface, elucidating the presence of a high density of interface states which hinder electron transport. By inserting a ZnO@ZMO interlayer composed of mixed ZnO and ZnMgO nanoparticles, the band bending and thus the interface states are observed to reduce significantly. We attribute this to the hybrid surface properties of ZnO@ZMO, which can annihilate the surface states of both the ZnO and ZnMgO layers. The introduction of a bridging layer has led to ∼40% enhancement in the power efficiency of blue QLEDs and noticeable performance boosts in green and red QLEDs. The findings here demonstrate a direct observation of interface states via detailed band structure studies and outline a potential pathway for eliminating these states for better performances in sandwich-structured devices.

19.
ACS Nano ; 15(10): 16242-16254, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34623793

RESUMO

Water-soluble red afterglow imaging agents based on ecofriendly nanomaterials have potential application in time-gated afterglow bioimaging due to their larger penetration depth and nondurable excitation. Herein, red afterglow imaging agents consisted of Rhodamine B (RhB) and carbon nanodots (CNDs) have been designed and demonstrated. In these agents, CNDs act as energy donors, and RhB acts as an energy acceptor. Both of them are confined into a hydrophilic silica shell to form a CNDs-RhB@silica nanocomposite. The phosphorescence emission spectrum of the CNDs and the absorption spectrum of the RhB match well, and efficient energy transfer from the CNDs to the RhB via Förster resonant energy transfer process can be achieved, with a transfer efficiency can reach 99.2%. Thus, the as-prepared nanocomposite can emit a red afterglow in aqueous solution, and the afterglow spectrum of CNDs-RhB@silica nanocomposite can extend to the first near-infrared window (NIR-I). The luminescence lifetime and afterglow quantum yield (QY) of the CNDs-RhB@silica can reach 0.91 s and 3.56%, respectively, which are the best results in red afterglow region. Time-gated in vivo afterglow imaging has been demonstrated by using the CNDs-RhB@silica as afterglow agents.


Assuntos
Carbono , Nanoestruturas , Transferência de Energia , Luminescência , Água
20.
ACS Appl Bio Mater ; 3(4): 2017-2027, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35025323

RESUMO

Malignant melanoma is a very aggressive form of skin cancer, with a low long-term survival rate. Developing multifunctional theranostic agents to simultaneously track and inhibit the activity of tumor targets is a potential strategy for combating melanoma metastasis. S100B expression is directly correlated with the degree of malignant metastatic melanoma and is overexpressed in the majority of malignant melanoma patients. Herein, the Ir(III) complex 7 was identified as a potent theranostic agent with nanomolar potency against S100B and selectivity over related substrates. Complex 7 exhibited desirable photophysical properties including a large Stokes shift and high photostability, while its long emission lifetime enabled its luminescence signal to be discriminated from a highly autofluorescent background by use of time-resolved emission spectroscopy. Importantly, complex 7 showed strong colocalization with S100B protein in melanoma cells with a stable signal up to at least 12 h, revealing its potential as a cellular probe for S100B. Moreover, complex 7 impeded the interaction between S100B and the C-terminus of p53 in the cytoplasm, thereby restoring the binding of p53 to its target promoters. Finally, complex 7 suppressed tumor growth and restrained lung metastases in vivo in two separate melanoma mouse models. To our knowledge, complex 7 is the first reported theranostic agent for simultaneously monitoring S100B and suppressing malignant melanoma metastasis in vivo via targeting S100B protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA