Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nat Prod Rep ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888887

RESUMO

Covering: up to the end of 2023Type I CRISPR-Cas systems are widely distributed, found in over 40% of bacteria and 80% of archaea. Among genome-sequenced actinomycetes (particularly Streptomyces spp.), 45.54% possess type I CRISPR-Cas systems. In comparison to widely used CRISPR systems like Cas9 or Cas12a, these endogenous CRISPR-Cas systems have significant advantages, including better compatibility, wide distribution, and ease of operation (since no exogenous Cas gene delivery is needed). Furthermore, type I CRISPR-Cas systems can simultaneously edit and regulate genes by adjusting the crRNA spacer length. Meanwhile, most actinomycetes are recalcitrant to genetic manipulation, hindering the discovery and engineering of natural products (NPs). The endogenous type I CRISPR-Cas systems in actinomycetes may offer a promising alternative to overcome these barriers. This review summarizes the challenges and recent advances in CRISPR-based genome engineering technologies for actinomycetes. It also presents and discusses how to establish and develop genome editing tools based on type I CRISPR-Cas systems in actinomycetes, with the aim of their future application in gene editing and the discovery of NPs in actinomycetes.

2.
Nucleic Acids Res ; 50(6): 3581-3592, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35323947

RESUMO

Direct cloning of biosynthetic gene clusters (BGCs) from microbial genomes facilitates natural product-based drug discovery. Here, by combining Cas12a and the advanced features of bacterial artificial chromosome library construction, we developed a fast yet efficient in vitro platform for directly capturing large BGCs, named CAT-FISHING (CRISPR/Cas12a-mediated fast direct biosynthetic gene cluster cloning). As demonstrations, several large BGCs from different actinomycetal genomic DNA samples were efficiently captured by CAT-FISHING, the largest of which was 145 kb with 75% GC content. Furthermore, the directly cloned, 110 kb long, cryptic polyketide encoding BGC from Micromonospora sp. 181 was then heterologously expressed in a Streptomyces chassis. It turned out to be a new macrolactam compound, marinolactam A, which showed promising anticancer activity. Our results indicate that CAT-FISHING is a powerful method for complicated BGC cloning, and we believe that it would be an important asset to the entire community of natural product-based drug discovery.


Assuntos
Produtos Biológicos , Streptomyces , Sistemas CRISPR-Cas , Clonagem Molecular , Família Multigênica , Streptomyces/genética
3.
STAR Protoc ; 4(3): 102435, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37432853

RESUMO

Large biosynthetic gene cluster (BGC) cloning is important for discovering natural product-based drugs and remains challenging in high GC content microorganisms (e.g., Actinobacteria). Here, we present an in vitro CRISPR-Cas12a-mediated protocol for direct cloning of large DNA fragments. We describe steps for crRNA design and preparation, genomic DNA isolation, and CRISPR-Cas12a cleavage and capture plasmid construction and linearization. We then detail target BGC and plasmid DNA ligation and transformation and screening for positive clones. For complete details on the use and execution of this protocol, please refer to Liang et al.1.


Assuntos
Sistemas CRISPR-Cas , DNA , Sistemas CRISPR-Cas/genética , Clonagem Molecular , Genômica
4.
J Agric Food Chem ; 68(1): 369-375, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31829586

RESUMO

A sensitive fluorescent DNA hydrogel aptasensor based on the self-assembly of rolling circle amplification (RCA) products was developed for ochratoxin A (OTA) detection in beer. A competitive binding mode of aptamer, complementary sequence, and target was integrated into the DNA hydrogel for OTA detection. The OTA aptamer first combined with the primer to form the hybridized product. Then, in the presence of OTA, the aptamer combined with OTA, which released the primer. The released primer hybridized with the padlock probe to form a circular template, and the RCA reaction was initiated by adding ligase, polymerase, and dNTPs. The fluorescent DNA hydrogel was obtained by adding Cy3-dUTP together with dNTPs, and the fluorescence (FL) intensity of the DNA hydrogel was positively correlated with OTA concentration. Under the optimal experimental conditions, the linear range of the relationship varied from 0.05 ng/mL to 100 ng/mL with a detection limit for OTA of 0.01 ng/mL. The fluorescent DNA hydrogel aptasensor showed good specificity and stability in beer samples. Therefore, the fabricated DNA hydrogel aptasensor shows considerable potential applications in detecting OTA for food safety.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , DNA/química , Hidrogéis/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Ocratoxinas/análise , Aptâmeros de Nucleotídeos/genética , Cerveja/análise , Técnicas Biossensoriais/instrumentação , DNA/genética , Fluorescência , Contaminação de Alimentos/análise , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA