Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Am Chem Soc ; 146(5): 3200-3209, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38276958

RESUMO

The introduction of lanthanide ions (Ln3+) into all-inorganic lead-free halide perovskites has captured significant attention in optoelectronic applications. However, doping Ln3+ ions into heterometallic halide layered double perovskite (LDP) nanocrystals (NCs) and their associated doping mechanisms remain unexplored. Herein, we report the first colloidal synthesis of Ln3+ (Yb3+, Er3+)-doped LDP NCs utilizing a modified hot-injection method. The resulting NCs exhibit efficient near-infrared (NIR) photoluminescence in both NIR-I and NIR-II regions, achieved through energy transfer down-conversion mechanisms. Density functional theory calculations reveal that Ln3+ dopants preferentially occupy the Sb3+ cation positions, resulting in a disruption of local site symmetry of the LDP lattices. By leveraging sensitizations of intermediate energy levels, we delved into a series of Ln3+-doped Cs4M(II)Sb2Cl12 (M(II): Cd2+ or Mn2+) LDP NCs via co-doping strategies. Remarkably, we observe a brightening effect of the predark states of Er3+ dopant in the Er3+-doped Cs4M(II)Sb2Cl12 LDP NCs owing to the Mn component acting as an intermediate energy bridge. This study not only advances our understanding of energy transfer mechanisms in doped NCs but also propels all-inorganic LDP NCs for a wider range of optoelectronic applications.

2.
J Am Chem Soc ; 146(29): 20323-20332, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38995375

RESUMO

Addressing the sluggish kinetics in the alkaline hydrogen oxidation reaction (HOR) is a pivotal yet challenging step toward the commercialization of anion-exchange membrane fuel cells (AEMFCs). Here, we have successfully immobilized indium (In) atoms in an orderly fashion into platinum (Pt) nanoparticles supported by reduced graphene oxide (denoted as O-Pt3In/rGO), significantly enhancing alkaline HOR kinetics. We have revealed that the ordered atomic matrix enables uniform and optimized hydrogen binding energy (HBE), hydroxyl binding energy (OHBE), and carbon monoxide binding energy (COBE) across the catalyst. With a mass activity of 2.3066 A mg-1 at an overpotential of 50 mV, over 10 times greater than that of Pt/C, the catalyst also demonstrates admirable CO resistance and stability. Importantly, the AEMFC implementing this catalyst as the anode catalyst has achieved an impressive power output compared to Pt/C. This work not only highlights the significance of constructing ordered oxophilic sites for alkaline HOR but also sheds light on the design of well-structured catalysts for energy conversion.

3.
Small ; 20(12): e2306563, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37929642

RESUMO

Crystalline carbon nitride (CCN), derived from amorphous polymeric CN, is considered as a new generation of metal-free photocatalyst because of its high crystallinity. In order to further promote the photocatalytic performance of CCN, p-type MnO nanoparticles are in situ synthesized and merged with n-type CCN through a one-pot process to form p-n heterojunction. The formed interfacial electric field between the semiconductors with different work functions efficiently breaks the coulomb interaction between MnO and CCN. The prepared catalysts exhibit drastically increased photocatalytic hydrogen evolution (PHE) activity integrated with oxidation of alkyl and aryl alcohols under irradiation of visible light. In the aqueous solution of benzyl alcohol (BzOH), the hydrogen generation rate over MnO/CCN (39.58 µmol h-1) is nearly 7 times and 37 times that of pure CCN (5.76 µmol h-1) and CN (1.06 µmol h-1), respectively, combining with oxidation of BzOH to benzaldehyde. This work proposes an avenue for in situ construction of a novel 2D material-based S-scheme heterojunction and extends its application in solar energy conservation and utilization.

4.
Luminescence ; 39(1): e4624, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950413

RESUMO

Organic light-emitting diodes (OLEDs) utilizing multi-resonance (MR) emitters show great potential in ultrahigh-definition display benefitting from superior merits of MR emitters such as high color purity and photoluminescence quantum yields. However, the scarcity of narrowband pure-green MR emitters with novel backbones and facile synthesis has limited their further development. Herein, two novel pure-green MR emitters (IDIDBN and tBuIDIDBN) are demonstrated via replacing the carbazole subunits in the bluish-green BCzBN skeleton with new polycyclic aromatic hydrocarbon (PAH) units, 5-phenyl-5,10-dihydroindolo[3,2-b]indole (IDID) and 5-(4-(tert-butyl)phenyl)-5,10-dihydroindolo[3,2-b]indole (tBuIDID), to simultaneously enlarge the π-conjugation and enhance the electron-donating strength. Consequently, a successful red shift from aquamarine to pure-green is realized for IDIDBN and tBuIDIDBN with photoluminescence maxima peaking at 529 and 532 nm, along with Commission Internationale de l'Eclairage (CIE) coordinates of (0.25, 0.71) and (0.28, 0.70). Furthermore, both emitters revealed narrowband emission with small full width at half-maximum (FWHM) below 28 nm. Notably, the narrowband pure-green emission was effectively preserved in corresponding devices, which afford elevated maximum external quantum efficiencies of 16.3% and 18.3% for IDIDBN and tBuIDIDBN.


Assuntos
Indóis , Hidrocarbonetos Policíclicos Aromáticos , Elétrons
5.
J Environ Manage ; 359: 121065, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714038

RESUMO

This study addresses the challenge of incomplete separation of mechanically recovered residual films and impurities in cotton fields, examining their impact on resource utilization and environmental pollution. It introduces an innovative screening method that combines pneumatic force and mechanical vibration for processing crushed film residue mixtures. A double-action screening device integrating pneumatic force and a key-type vibrating screen was developed. The working characteristics of this device were analyzed to explore the dynamic characteristics and kinematic laws of the materials using theoretical analysis methods. This led to the revelation of the screening laws of residual films and impurities. Screening tests were conducted using the Central Composite Design method, considering factors such as fan outlet, fan speed, vibration frequency of the screen, and feeding amount, with the impurity-rate-in-film (Q) and film-content-in-impurity (W) as evaluation indexes. The significant influence of each factor on the indexes was determined, regression models between the test factors and indexes were established, and the effect laws of key parameters and their significant interaction terms on the indexes were interpreted. The optimal combination of working parameters for the screening device was identified through multivariable optimization methods. Validation tests under this optimal parameters combination showed that the impurity-rate-in-film was 3.08% and the film-content-in-impurity was 1.94%, with average errors between the test values and the predicted values of 3.36% and 5.98%, respectively, demonstrating the effectiveness of the proposed method. This research provides a novel method and technical reference for achieving effective separation of residual film and impurities, thereby enhancing resource utilization.


Assuntos
Gossypium , Fibra de Algodão/análise , Poluição Ambiental/prevenção & controle
6.
Molecules ; 29(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38998926

RESUMO

As an important photovoltaic material, organic-inorganic hybrid perovskites have attracted much attention in the field of solar cells, but their instability is one of the main challenges limiting their commercial application. However, the search for stable perovskites among the thousands of perovskite materials still faces great challenges. In this work, the energy above the convex hull values of organic-inorganic hybrid perovskites was predicted based on four different machine learning algorithms, namely random forest regression (RFR), support vector machine regression (SVR), XGBoost regression, and LightGBM regression, to study the thermodynamic phase stability of organic-inorganic hybrid perovskites. The results show that the LightGBM algorithm has a low prediction error and can effectively capture the key features related to the thermodynamic phase stability of organic-inorganic hybrid perovskites. Meanwhile, the Shapley Additive Explanation (SHAP) method was used to analyze the prediction results based on the LightGBM algorithm. The third ionization energy of the B element is the most critical feature related to the thermodynamic phase stability, and the second key feature is the electron affinity of ions at the X site, which are significantly negatively correlated with the predicted values of energy above the convex hull (Ehull). In the screening of organic-inorganic perovskites with high stability, the third ionization energy of the B element and the electron affinity of ions at the X site is a worthy priority. The results of this study can help us to understand the correlation between the thermodynamic phase stability of organic-inorganic hybrid perovskites and the key features, which can assist with the rapid discovery of highly stable perovskite materials.

7.
Angew Chem Int Ed Engl ; 63(7): e202318433, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38148704

RESUMO

Multiple-resonance thermally activated delayed fluorescence (MR-TADF) materials are highly coveted for their high efficiency and narrowband emission in organic light-emitting diodes (OLEDs). Nevertheless, the development of near-infrared (NIR) MR-TADF emitters remains a formidable challenge. In this study, we design two new NIR MR-TADF emitters, PXZ-R-BN and BCz-R-BN, by embedding 10H-phenoxazine (PXZ) and 7H-dibenzo[c,g]carbazole (BCz) fragments to increase the electron-donating ability or extending π-conjugation on the framework of para-boron fusing polycyclic aromatic hydrocarbons (PAHs). Both compounds emit in the NIR region, with a full-width at half-maximum (FWHM) of 49 nm (0.13 eV) for PXZ-R-BN and 43 nm (0.11 eV) for BCz-R-BN in toluene. To sensitize the two NIR MR-TADF emitters in OLEDs, a new platinum complex, Pt-1, is designed as a sensitizer. The PXZ-R-BN-based sensitized OLEDs achieve a maximum external quantum efficiency (EQEmax ) of nearly 30 % with an emission band at 693 nm, and exceptional long operational stability with an LT97 (time to 97 % of the initial luminance) value of 39084 h at an initial radiance of 1000 mW sr-1 m-2 . The BCz-R-BN-based OLEDs reach EQEmax values of 24.2 % with an emission band at 713 nm, which sets a record value for NIR OLEDs with emission bands beyond 700 nm.

8.
J Am Chem Soc ; 145(40): 21886-21896, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37768875

RESUMO

Developing Type-I core/shell quantum dots is of great importance toward fabricating stable and sustainable photocatalysts. However, the application of Type-I systems has been limited due to the strongly confined photogenerated charges by the energy barrier originating from the wide-bandgap shell material. In this project, we found that through the decoration of Au satellite-type domains on the surface of Type-I CdS/ZnS core/shell quantum dots, such an energy barrier can be effectively overcome and an over 400-fold enhancement of photocatalytic H2 evolution rate was achieved compared to bare CdS/ZnS quantum dots. Transient absorption spectroscopic studies indicated that the charges can be effectively extracted and subsequently transferred to surrounding molecular substrates in a subpicosecond time scale in such hybrid nanocrystals. Based on density functional theory calculations, the ultrafast charge separation rates were ascribed to the formation of intermediate Au2S layer at the semiconductor-metal interface, which can successfully offset the energy confinement introduced by the ZnS shell. Our findings not only provide insightful understandings on charge carrier dynamics in semiconductor-metal heterostructural materials but also pave the way for the future design of quantum dot-based hybrid photocatalytic systems.

9.
Arch Biochem Biophys ; 742: 109641, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209765

RESUMO

The microenvironment near the receptor on biological membrane plays an important role in regulating drug-receptor interaction, and the interaction between drugs and lipids on membrane can also affect the microenvironment of membrane, which may affect drugs' efficacy or cause the drug resistance. Trastuzumab (Tmab) is a monoclonal antibody, used to treat early breast cancer associated with the overexpression of Human Epidermal growth factor Receptor 2 (HER2). But its effectiveness is limited due to its tendency to make tumor cells resistant to the drug. In this work, the monolayer mixed by unsaturated phospholipids (DOPC, DOPE and DOPS) and cholesterol were used as a model to simulate the fluid membrane region on biological membrane. The phospholipid/cholesterol mixed monolayers in molar ratio 7:3 and 1:1, were respectively used to simulate the one layer of simplified normal cell membrane and tumor cell membrane. The influence of this drug on the phase behavior, elastic modulus, intermolecular force, relaxation and the surface roughness of the unsaturated phospholipid/cholesterol monolayer was investigated. The results show that at 30 mN/m the increase or decrease of the elastic modulus and surface roughness of the mixed monolayer caused by Tamb depends on the type of phospholipid, but the intensity of the effect depends on the content of cholesterol, and the intensity of influence is more significant at the presence of 50% cholesterol. However, the effect of Tmab on the ordering of the DOPC/cholesterol or DOPS/cholesterol mixed monolayer is stronger when the content of cholesterol is 30%, but it was stronger for the DOPE/cholesterol mixed monolayer when the content of cholesterol is 50%. This study is helpful to understand the effects of anticancer drugs on microenvironment of cell membrane, and it has a certain reference value for the design of drug delivery system and drug target identification.


Assuntos
Colesterol , Fosfolipídeos , Humanos , Fosfolipídeos/metabolismo , Trastuzumab , Membrana Celular/metabolismo , Colesterol/metabolismo , Termodinâmica , Propriedades de Superfície
10.
Phys Chem Chem Phys ; 25(38): 26211-26218, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37740328

RESUMO

We propose a reconfigurable spin tunnel diode based on a small spin-gapped semiconductor (non-doped VS2 monolayer) and semi-metallic magnets (doped VS2 monolayer) separated by a thin insulating tunneling barrier (h-BN). By using first-principles calculations assisted by the nonequilibrium Green's function method, we have carried out a comprehensive study of spin-dependent current and spin transport properties while varying the bias. The device exhibited a magnetization-controlled diode-like behavior with forward-allowed current under antiparallel magnetizations and reverse-forbidden current under parallel magnetizations at the two electrodes. The threshold voltage is tunable by the hole doping density of VS2 monolayers. The doping effect on VS2 monolayers indicates that the magnetic moments, the Heisenberg exchange parameters and Curie temperatures can be monotonically reduced by a larger hole doping density. Our study on VS2 heterostructures has presented a simple and practical device strategy with very promising applications in spintronics.

11.
Phys Chem Chem Phys ; 25(3): 1616-1626, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36541178

RESUMO

Thermoelectric (TE) materials have attracted great attention in solving the problems in the waste heat field, while low figure of merit and poor material stability drastically limit their practical applications. In this work, a two-dimensional (2D) Sc2Si2Te6 monolayer was systematically explored as a promising TE material via ab initio methods. The results reveal that the Sc2Si2Te6 monolayer possesses an indirect band gap with a rhombohedral crystal phase and exhibits excellent dynamic stability. The lower electronic/lattice thermal conductivity and higher electron carrier mobility result in good n-type power factor parameters between 6.24 × 1010 and 1.5 × 1011 W m-1 s-1 K-2 from 300 to 700 K. Such combined merits of low thermal conductivity and high power factor parameters endow the Sc2Si2Te6 monolayer with superior thermoelectric properties with figure of merit (ZT) values of 1.41 and 3.81 at 300 K and 700 K, respectively. This study presented here can shed light on the future design of various 2D materials for thermoelectric applications.

12.
Sensors (Basel) ; 23(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37896576

RESUMO

The field harvesting process of harvesting machinery is often affected by high workload and environmental factors that can impede/delay manual rowing, thereby leading to lower efficiency and quality in the residual film collector. To address this challenge, an automatic rowing control system using the 4mz-220d self-propelled residual film collector as the experimental carrier was proposed in this study. Cotton stalks in the ridges were chosen as the research object, and a comprehensive application of key technologies, machinery, and electronic control was used, thereby incorporating a pure tracking model as the path-tracking control method. To achieve the automatic rowing function during the field traveling process, the fuzzy control principle was implemented to adjust the forward distance within the pure tracking model dynamically, and the expected steering angle of the steering wheel was determined based on the kinematic model of the recovery machine. The MATLAB/Simulink software was utilized to simulate and analyze the proposed model, thus achieving significant improvements in the automation level of the residual film collector. The field harvesting tests showed that the average deviation of the manual rowing was 0.144 m, while the average deviation of the automatic rowing was 0.066 m. Moreover, the average lateral deviation of the automatic rowing was reduced by 0.078 m with a probability of deviation within 0.1 m of 95.71%. The research study demonstrated that the designed automatic rowing system exhibited high stability and robustness, thereby meeting the requirements of the autonomous rowing operations of residual film collectors. The results of this study can serve as a reference for future research on autonomous navigation technology in agriculture.

13.
Molecules ; 28(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37375395

RESUMO

During the COVID-19 pandemic, the treatment of pulmonary fungal infection faced noteworthy challenges. Amphotericin B has shown promising therapeutic effects as an inhalation treatment for pulmonary fungal infections, especially those associated with the COVID-19 virus, due to its rare resistance. However, because the drug frequently produces renal toxicity, its effective dose is limited in clinical use. In this work, the DPPC/DPPG mixed monolayer was used as the pulmonary surfactant monolayer to study the interaction between amphotericin B and the pulmonary surfactant monolayer during inhalation therapy using the Langmuir technique and atomic force microscopy. The effects of different molar ratios of AmB on the thermodynamic properties and surface morphology of the pulmonary surfactant monolayer at different surface pressures was evaluated. The results showed that when the molar ratio of AmB to lipids in the pulmonary surfactant was less than 1:1, the main intermolecular force was attractive at a surface pressure greater than 10 mN/m. This drug had little effect on the phase transition point of the DPPC/DPPG monolayer, but decreased the height of the monolayer at 15 mN/m and 25 mN/m. When the molar ratio of AmB to lipids was greater than 1:1, the intermolecular force was mainly repulsive at a surface pressure greater than 15 mN/m, and AmB increased the height of the DPPC/DPPG monolayer at both 15 mN/m and 25 mN/m. These results are helpful in understanding the interaction between the pulmonary surfactant model monolayer and different doses of drugs at various surface tensions during respiration.


Assuntos
COVID-19 , Surfactantes Pulmonares , Humanos , Anfotericina B/farmacologia , 1,2-Dipalmitoilfosfatidilcolina , Pandemias , Respiração , Propriedades de Superfície
14.
Ecotoxicol Environ Saf ; 243: 113987, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35994906

RESUMO

In this work, MIL-100(Fe)-decorated mesoporous carbon powders (MC@MIL-100(Fe)) were prepared by in situ growth of MIL-100(Fe) on the surface of ZIF-8 framework-based mesoporous carbons (MC). The hybrid material was characterized using SEM equipped with EDS mapping for morphology investigation, X-ray photoelectron spectroscopy for chemical valence analysis, and X-ray diffraction for crystal structure determination. The developed sensor separated from the traditional bismuth film decoration, and simultaneously, MC@MIL-100(Fe) was applied for the first time to electrochemically detect trace amounts of Pb(II) and Cd(II). The fabricated MC@MIL-100(Fe)-based electrochemical sensor showed excellent response to the target analytes at -0.55 and - 0.75 V for lead and cadmium ions, respectively. By adjusting some measurement parameters, that is, the loading concentration of MC@MIL-100(Fe), acidity of the HAc-NaAc buffer (ABS), deposition potential, and deposition time, the analytical performance of the proposed electrochemical sensor was examined by exploring the calibration curve, repeatability, reproducibility, stability, and anti-interference under optimized conditions. The response current of the proposed MC@MIL-100(Fe) electrochemical sensor showed a well-defined linear relationship in the concentration ranges of 2-250 and 2-270 µg·L-1 for Cd(II) and Pb(II), respectively. In addition, the detection limits of the sensor for Cd(II) and Pb(II) were 0.18 and 0.15 µg L-1, respectively, which are well below the World Health Organization (WHO) drinking water guideline value. The MC@MIL-100(Fe) can be potentially used as an electrochemical platform for monitoring heavy metals in surface water, with satisfactory results.


Assuntos
Cádmio , Água Potável , Cádmio/análise , Carbono/química , Água Potável/análise , Eletrodos , Íons/química , Chumbo/análise , Reprodutibilidade dos Testes
15.
Sci Technol Adv Mater ; 23(1): 140-160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185390

RESUMO

Since the first report on truly two-dimensional (2D) magnetic materials in 2017, a wide variety of merging 2D magnetic materials with unusual physical characteristics have been discovered and thus provide an effective platform for exploring the associated novel 2D spintronic devices, which have been made significant progress in both theoretical and experimental studies. Herein, we make a comprehensive review on the recent scientific endeavors and advances on the various engineering strategies on 2D ferromagnets, such as strain-, doping-, structural- and electric field-engineering, toward practical spintronic applications, including spin tunneling junctions, spin field-effect transistors and spin logic gate, etc. In the last, we discuss on current challenges and future opportunities in this field, which may provide useful guidelines for scientists who are exploring the fundamental physical properties and practical spintronic devices of low-dimensional magnets.

16.
Phys Chem Chem Phys ; 24(1): 560-567, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34904983

RESUMO

A low thermal conductivity and a high power factor are essential for efficient thermoelectric materials. The lattice thermal conductivity can be reduced by reducing the dimensions of the materials, thus improving the thermoelectric performance. In this work, the electronic, carrier and phonon transport and the thermoelectric properties of ZrNX (X = Cl, Br, and I) monolayers were investigated using density functional theory and Boltzmann transport theory. The electronic and phonon transport show anisotropic properties. The thermal conductivities are 20.8, 14.6 and 12.4 W m-1 K-1 at room temperature along the y-direction for the ZrNCl, ZrNBr, and ZrNI monolayers, respectively. Combining the low lattice thermal conductivity and the high power factor results in an excellent thermoelectric performance of the ZrNX monolayers. The thermoelectric figure of merit of ZrNX monolayers can reach magnitudes of ∼0.49-3.15 by optimal hole and electron concentrations between 300 and 700 K. ZrNX monolayers with high ZT values for n- and p-type materials would thus be novel, promising candidate 2D thermoelectric materials for heat-electricity conversion.

17.
Acta Pharmacol Sin ; 42(1): 142-148, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32467569

RESUMO

The programmed cell death protein 1 (PD-1) is an immune-checkpoint that negatively regulates the immune system and a key mechanism that tumors utilize to escape from immune surveillance. PD-1 antibodies can block the interaction of PD-1 with its ligands (PD-L1 and PD-L2), restore T cells activation, and elicit antitumor activity. In this paper, we reported a novel PD-1 monoclonal antibody (mAb) CS1003, which is a humanized IgG4 PD-1 mAb generated by conventional hybridoma technology, and currently being developed in multiple clinical trials as monotherapy or in combination with other anticancer agents. We showed that CS1003 bound to recombinant human, cynomolgus monkey, and mouse PD-1 with EC50 values of 0.1757, 0.2459, and 0.3664 nM, respectively. CS1003 blocked PD-1 interaction with its ligands, dose-dependently enhanced T cell proliferation and secretion of cytokines (IL-2 and IFN-γ) to the levels comparable to the reference antibody pembrolizumab. Intraperitoneal administration of CS1003 (0.1, 0.5, 2.5 mg/kg, once every 3 days) dose-dependently suppressed the growth of MC38-hPD-L1 colon cancer in hPD-1 knock-in mice. Pharmacokinetics (PK) study revealed a linear PK profile within the dose range of 2-18 mg/kg following single intravenous administration in cynomolgus monkey. These data provide a comprehensive preclinical characterization of CS1003 that supports its clinical development for cancer immunotherapy.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias do Colo/terapia , Receptor de Morte Celular Programada 1/imunologia , Animais , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacocinética , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacocinética , Antígeno B7-H1/metabolismo , Proliferação de Células/efeitos dos fármacos , Reações Cruzadas , Feminino , Técnicas de Introdução de Genes , Humanos , Imunoterapia , Interferon gama/metabolismo , Interleucina-2/metabolismo , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Ligação Proteica/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos
18.
Ecotoxicol Environ Saf ; 225: 112745, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34481349

RESUMO

In the present work, hematite-boron-carbonitride (Fe2O3-BCN) nanosheets were synthesized by a simple hydrothermal reaction and the following high temperature treatment. The morphology, structure and chemical composition of the as-prepared material were carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The Fe2O3-BCN nanosheets were used to modified on the surface of the glassy carbon electrode to fabricate an electrochemical sensor for lead ions (Pb(II)) via differential pulse anodic stripping voltammetry (DPASV). At the same time, the influence of the modification concentration, solution acidity, deposition potential and deposition time on response peak current of Pb(II) at the Fe2O3-BCN-based electrochemical sensor was well investigated. Under the optimized conditions, the electrochemical signal and concentration of Pb(II) show two-stage linear relationship in the range of 0.5 - 40 µg/L and 40 -140 µg/L, with a limit of detection (LOD) of 0.129 µg/L. The Fe2O3-BCN-based electrochemical sensor shows excellent selectivity and anti-interference ability in the anti-interference experiments and actual sample analysis experiments, revealing its broad application in environmental monitoring of Pb(II).


Assuntos
Nanopartículas , Água , Compostos Férricos , Íons , Chumbo
19.
Nanotechnology ; 31(18): 185703, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31945747

RESUMO

A novel three-dimensional (3D) bifunctional electrocatalyst, CoNi alloy nanoparticle and carbon nanotube decorated N-doped carbon nanosheet arrays on carbon cloth (CoNi alloy/NCNSAs/CC) derived from polymetallic organic frameworks, is firstly prepared. The CoNi alloy/NCNSAs/CC-800 fabricated by pyrolyzing at 800 °C exhibits an oxygen reduction reaction (ORR, limiting current density) of 6.5 mA cm-2 and a superior oxygen evolution reaction (OER, at 10 mA cm-2) of 1.51 V, as well as a smaller potential difference of 0.676 V between OER and ORR half-wave potential, outperforming previous self-supporting cathodes. Flexible Zn-air batteries (FZABs) assembled with the CoNi alloy/NCNSAs/CC-800 exhibit higher energy density (98.8 mW cm-2) and higher capacity (879 mAh g-1), as well as excellent mechanical cycle ability (lower voltage gap of 0.66 V during the charge/discharge cycles at flat and folded state), significantly outstripping all other FZABs with self-supporting electrodes currently reported. Such a remarkable performance is ascribed to the 3D hierarchical nanostructure which promotes mass transport, the higher graphitization facilitating electronic mobility and the evenly dispersed active sites which accelerate kinetic reactions. So CoNi alloy/NCNSAs/CC-800 is a promising cathode candidate for ideal wearable energy devices and has great potential application in the field of electrochemical energy storage and conversion.

20.
Appl Opt ; 59(26): 7925-7929, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32976466

RESUMO

Near-ultraviolet light-emitting diodes (NUV-LEDs) have been a rising UV light source for identification, resin curing, ink-printing, and illumination. In pursuit of more extensive application in different fields, their optical performances are obliged to be better. In this paper, we investigated the effect of a quartz lens structure on the optical performances of NUV-LEDs. The feature size of the quartz lens was optimized by optical simulations. When the quartz lens has the optimized feature size with a height above 1.8 mm while adding a silicone layer between the chip and the lens, the NUV-LEDs achieve the highest light efficiency, and exhibit a smallest light spot and largest light energy at the center region. Furthermore, different lenses were prepared and applied in the packaging of NUV-LEDs. As a consequence, the light output power of NUV-LEDs with a silicone layer is enhanced by 20.19% at the current of 220 mA. The light output power of NUV-LEDs is enhanced by 38.66%, 43.98%, and 53.30%, respectively, by using the different quartz lenses at the current of 220 mA, and the NUV-LED achieves the highest luminous intensity by 0.098 cd and smallest output light angle by 106.0°. It is attributed to the significant refraction effect of the quartz lens, which improves the optical performances of NUV-LEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA