Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Physiol ; 602(2): 317-332, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38152023

RESUMO

It has been documented that increased sympathetic activity contributes to the development of cardiovascular diseases, such as hypertension. We previously reported that ß-arrestin-1, a multifunctional cytoskeletal protein, was downregulated in the rostral ventrolateral medulla (RVLM) of the spontaneously hypertensive rat (SHR), and its overexpression elicited an inhibitory effect on sympathetic activity in hypertension. microRNA (miR)-22-3p has been reported to be associated with the pathological progress of hypertension. The purpose of this study was to determine the role of miR-22-3p in ß-arrestin-1-mediated central cardiovascular regulation in hypertension. It was observed that miR-22-3p was upregulated in the RVLM of SHRs compared with normotensive Wistar-Kyoto (WKY) rats, and it was subsequently confirmed to target the ß-arrestin-1 gene using a dual-luciferase reporter assay. miR-22-3p was downregulated in the RVLM using adeno-associated virus with 'tough decoys', which caused a significant increase of ß-arrestin-1 expression and decrease of noradrenaline and blood pressure (BP) in SHRs. However, upregulation of miR-22-3p using lentivirus in the RVLM of WKY rats significantly increased BP. In in vitro PC12 cells, enhanced oxidative stress activity induced by angiotensin II was counteracted by pretreatment with miR-22-3p inhibitor, and this effect could be abolished by ß-arrestin-1 gene knockdown. Furthermore, microglia exhaustion significantly diminished miR-22-3p expression, and enhanced ß-arrestin-1 expression in the RVLM of SHRs. Activation of BV2 cells in vitro evoked a significant increase of miR-22-3p expression, and this BV2 cell culture medium was also able to facilitate miR-22-3p expression in PC12 cells. Collectively, our findings support a critical role for microglia-derived miR-22-3p in inhibiting ß-arrestin-1 in the RVLM, which is involved in central cardiovascular regulation in hypertension. KEY POINTS: Impairment of ß-arrestin-1 function in the rostral ventrolateral medulla (RVLM) has been reported to be associated with the development of sympathetic overactivity in hypertension. However, little is known about the potential mechanisms of ß-arrestin-1 dysfunction in hypertension. miR-22-3p is implicated in multiple biological processes, but the role of miR-22-3p in central regulation of cardiovascular activity in hypertension remains unknown. We predicted that miR-22-3p could directly bind to the ß-arrestin-1 gene (Arrb1), and this hypothesis was confirmed by using a dual-luciferase reporter assay. Inhibition of ß-arrestin-1 by miR-22-3p was further verified in both in vivo and in vitro experiments. Furthermore, our results suggested miR-22-3p as a risk factor for oxidative stress in the RVLM, thus contributing to sympatho-excitation and hypertension. Our present study provides evidence that microglia-derived miR-22-3p may underlie the pathogenesis and progression of neuronal hypertension by inhibiting ß-arrestin-1 in the RVLM.


Assuntos
Hipertensão , MicroRNAs , Animais , Ratos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Pressão Sanguínea/fisiologia , Luciferases/metabolismo , Bulbo/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
2.
J Chem Phys ; 160(3)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38226827

RESUMO

Tailoring the crystal structure, spin, and charge state of perovskite oxides through fluorine ion doping is an attractive and effective strategy, which could significantly modify the physical and chemical properties of base oxides. Here, BaFe1-xMnxO3-δ (x = 0, 0.1, 0.2, 0.3) and BaFe1-xMnxO2.9-δF0.1 (x = 0.1, 0.2, 0.3), belonging to 6H-type BaFeO3-δ, are prepared and investigated to evaluate the impact of F- doping. The distortion of crystal structure and the reduced average valence of Mn and Fe confirm the preference for F- substitution in the hexagonal layer, which are found as the key factors for the improved magnetic properties, including ferromagnetic ordering temperature, coercive force, and remanent magnetization. Moreover, the valence reduction of B-site ions and the increased resistance distinctly indicate the expense of electron hole via fluorine doping. This work describes the adjustment of crystal structure, electronic configuration, and ferromagnetic performance by simple F- doping, which provides a prospect for practical magnetic materials.

3.
Bioinformatics ; 38(24): 5398-5405, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36282843

RESUMO

MOTIVATION: Catastrophic transitions are ubiquitous in the dynamic progression of complex biological systems; that is, a critical transition at which complex systems suddenly shift from one stable state to another occurs. Identifying such a critical point or tipping point is essential for revealing the underlying mechanism of complex biological systems. However, it is difficult to identify the tipping point since few significant differences in the critical state are detected in terms of traditional static measurements. RESULTS: In this study, by exploring the dynamic changes in gene cooperative effects between the before-transition and critical states, we presented a model-free approach, the directed-network rank score (DNRS), to detect the early-warning signal of critical transition in complex biological systems. The proposed method is applicable to both bulk and single-cell RNA-sequencing (scRNA-seq) data. This computational method was validated by the successful identification of the critical or pre-transition state for both simulated and six real datasets, including three scRNA-seq datasets of embryonic development and three tumor datasets. In addition, the functional and pathway enrichment analyses suggested that the corresponding DNRS signaling biomarkers were involved in key biological processes. AVAILABILITY AND IMPLEMENTATION: The source code is freely available at https://github.com/zhongjiayuan/DNRS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias , Software , Humanos , Biomarcadores , Análise de Célula Única , Perfilação da Expressão Gênica , Análise de Sequência de RNA
4.
Curr Cardiol Rep ; 25(7): 747-759, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37233923

RESUMO

PURPOSE OF REVIEW: Heart failure is a severe clinical syndrome with complex and unclarified mechanisms, and it poses a serious threat to human health. MicroRNA, a non-coding RNA, can directly bind to target genes and regulate their expression. The important role of microRNAs in the development of HF has become a hot topic of research in recent years. This paper summarizes and prospects the mechanisms of microRNAs in regulating cardiac remodeling during heart failure to provide reference ideas for further research and clinical treatment. RECENT FINDINGS: With extensive research, more target genes for microRNAs have been clarified. By modulating various molecules, microRNAs affect the contractile function of the myocardium and alter the process of myocardial hypertrophy, myocyte loss, and fibrosis, thereby interfering with the process of cardiac remodeling and exerting an important effect in the process of heart failure. Based on the above mechanism, microRNAs have promising applications in the diagnosis and treatment of heart failure. MicroRNAs form a complex post-transcriptional control mechanism of gene expression, and the increase or decrease of their content during heart failure largely alters the course of cardiac remodeling. By continuously identifying their target genes, it is expected to achieve more precise diagnosis and treatment of this important topic of heart failure.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Remodelação Ventricular/genética , Miocárdio/metabolismo , Regulação da Expressão Gênica
5.
Am J Physiol Regul Integr Comp Physiol ; 323(6): R861-R874, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36222883

RESUMO

Hypertension is characterized by sympathetic hyperactivity, which is related to the overexcitation of the presympathetic neurons in the rostral ventrolateral medulla (RVLM). Nitric oxide (NO) has been reported to be a vital neuromodulator involved in central cardiovascular regulation. However, the mechanism of interleukin-enhanced binding factor 3 (ILF3) participating in blood pressure (BP) regulation is still unclear. Therefore, this study aims to clarify the role of ILF3 within the rostral ventrolateral medulla (RVLM) in regulating NO in hypertension. It was found that the expression level of ILF3 was significantly increased in the RVLM of spontaneously hypertensive rats (SHR) compared with Wistar-Kyoto (WKY) rats through microarray gene expression analysis, Western blot, and immunofluorescence. Overexpression of ILF3 by injecting constructed adenovirus into the RVLM increased the BP and renal sympathetic nerve activity (RSNA) of the WKY rats, significantly decreasing NO production and neuronal nitric oxide synthase (nNOS) expression. Knockdown of ILF3 in the RVLM of SHR significantly reduced BP but increased NO production and the neuronal nitric oxide synthase (nNOS) expression. Furthermore, it was found that the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway was activated via Western blotting in the RVLM after overexpression of ILF3, whereas it was attenuated after knockdown of ILF3 in SHR. In addition, inhibition of PI3K by intracisternal infusion of the PI-103 attenuated the increase in Akt phosphorylation and decrease in nNOS expression and NO production caused by overexpressing ILF3, which ultimately blunted high BP induced by overexpressing ILF3. Taken together, this current study suggests that ILF3 participates in high BP via reducing NO production in the RVLM through PI3K/Akt pathway.


Assuntos
Hipertensão , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Ratos Endogâmicos WKY , Fosfatidilinositol 3-Quinase/metabolismo , Bulbo/metabolismo , Pressão Sanguínea , Ratos Endogâmicos SHR , Interleucinas/metabolismo , Proteínas do Fator Nuclear 90/metabolismo
6.
Opt Express ; 30(7): 11444-11458, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473088

RESUMO

Active phase-control metasurfaces show outstanding capability in the active manipulation of light propagation, while the previous active phase control methods have many constraints in the cost of simulation or the phase modulation range. In this paper, we design and demonstrate a phase controlled metastructure based on two circular split ring resonators (CSRRs) composed of silicon and Au with different widths, which can continuously achieve an arbitrary Pancharatnam-Berry (PB) phase between -π and π before or after active control. The PB phase of such a metasurface before active control is determined by the rotation angle of the Au-composed CSRR, while the PB phase after active control is determined by the rotation angle of the silicon-composed CSRR. And active control of the PB phase is realized by varying conductivity of silicon under an external optical pump. Based on this metastructure, active control of light deflection, metalens with arbitrary reconfigurable focal points and achromatic metalens under selective frequencies are designed and simulated. Moreover, the experimental results demonstrate that focal spots of metalens can be actively controlled by the optical pump, in accord with the simulated ones. Our metastructure implements a plethora of metasurfaces' active phase modulation and provides applications in active light manipulation.

7.
Biomed Chromatogr ; 33(10): e4619, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31177559

RESUMO

Hypertension is a common chronic disease, and it is the strongest risk factor for cardiovascular disease. Recently, the number of patients with hypertension-related complications has increased significantly, adding a heavy burden to the public health system. It is known that chronic stress plays an important role in the pathogenesis of cardiovascular diseases such as hypertension and stroke. However, the impact of hypertension on the dysfunctions induced by chronic stress remains poorly understood. In this study, using LC-MS-based metabolomics, we established a chronic stress model to demonstrate the mechanisms of stress-induced hypertension. We found that 30 metabolites in chronically stressed rats were changed; of these metabolites, seven had been upregulated, and 23 had been downregulated, including amino acids, phospholipids, carnitines and fatty acids, many of which are involved in amino acid metabolism, cell membrane injury, ATP supply and inflammation. These metabolites are engaged in dysregulated pathways and will provide a targeted approach to study the mechanism of stress-induced hypertension.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Hipertensão/metabolismo , Espectrometria de Massas/métodos , Metabolômica/métodos , Estresse Psicológico/metabolismo , Aminoácidos/sangue , Aminoácidos/metabolismo , Animais , Pressão Sanguínea/fisiologia , Doença Crônica , Corticosterona/sangue , Corticosterona/metabolismo , Modelos Animais de Doenças , Metaboloma/fisiologia , Norepinefrina/sangue , Norepinefrina/metabolismo , Fosfolipídeos/sangue , Fosfolipídeos/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Nitric Oxide ; 67: 58-67, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28392446

RESUMO

Nitric oxide (NO) contributes to the central control of cardiovascular activity. The rostral ventrolateral medulla (RVLM) has been recognized as a pivotal region for maintaining basal blood pressure (BP) and sympathetic tone. It is reported that asymmetric dimethylarginine (ADMA), characterized as a cardiovascular risk marker, is an endogenous inhibitor of nitric oxide synthesis. The present was designed to determine the role of ADMA in the RVLM in the central control of BP in hypertensive rats. In Sprague Dawley (SD) rats, microinjection of ADMA into the RVLM dose-dependently increased BP, heart rate (HR), and renal sympathetic never activity (RSNA), but also reduced total NO production in the RVLM. In central angiotensin II (Ang II)-induced hypertensive rats and spontaneously hypertensive rat (SHR), the level of ADMA in the RVLM was increased and total NO production was decreased significantly, compared with SD rats treated vehicle infusion and WKY rats, respectively. These hypertensive rats also showed an increased protein level of protein arginine methyltransferases1 (PRMT1, which generates ADMA) and a decreased expression level of dimethylarginine dimethylaminohydrolases 1 (DDAH1, which degrades ADMA) in the RVLM. Furthermore, increased AMDA content and PRMT1 expression, and decreased levels of total NO production and DDAH1 expression in the RVLM in SHR were blunted by intracisternal infusion of the angiotensin II type 1 receptor (AT1R) blocker losartan. The current data indicate that the ADMA-mediated NO inhibition in the RVLM plays a critical role in involving in the central regulation of BP in hypertension, which may be associated with increased Ang II.


Assuntos
Arginina/análogos & derivados , Pressão Sanguínea/efeitos dos fármacos , Bulbo/efeitos dos fármacos , Óxido Nítrico/antagonistas & inibidores , Amidoidrolases/metabolismo , Angiotensina II/farmacologia , Animais , Arginina/administração & dosagem , Arginina/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Rim/inervação , Rim/metabolismo , Losartan/farmacologia , Masculino , Bulbo/metabolismo , Óxido Nítrico/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Sistema Nervoso Simpático/metabolismo , ômega-N-Metilarginina/administração & dosagem , ômega-N-Metilarginina/farmacologia
9.
Neural Plast ; 2017: 3256325, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29098089

RESUMO

It has been demonstrated that homocysteine (HCY) is a significant risk factor of hypertension, which is characterized by overactivity of sympathetic tone. Excessive oxidative stress in the rostral ventrolateral medulla (RVLM), a key region for control of sympathetic outflow, contributes to sympathetic hyperactivity in hypertension. Therefore, the goal of the present study is to determine the effect of systemic HCY on production of reactive oxygen species (ROS) in the RVLM. In the rat model of the diet-induced hyperhomocysteinemia (L-methionine, 1 g/kg/day, 8 weeks), we found that the HCY resulted in a significant increase (≈3.7-fold, P < 0.05) in ROS production in the RVLM, which was paralleled with enhanced sympathetic tone and blood pressure (BP). Compared to the vehicle group, levels of BP and basal renal sympathetic nerve activity in the HCY group were significantly (P < 0.05, n = 5) increased by an average of 27 mmHg and 31%, respectively. Furthermore, the rats treated with L-methionine (1 g/kg/day, 8 weeks) showed an upregulation of NADPHase (NOX4) protein expression and a downregulation of superoxide dismutase protein expression in the RVLM. The current data suggest that central oxidative stress induced by systemic HCY plays an important role in hypertension-associated sympathetic overactivity.


Assuntos
Hiper-Homocisteinemia/metabolismo , Bulbo/efeitos dos fármacos , Metionina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Hiper-Homocisteinemia/induzido quimicamente , Bulbo/metabolismo , NADPH Oxidase 4/metabolismo , Ratos , Superóxido Dismutase , Sistema Nervoso Simpático/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
10.
Psychosom Med ; 78(1): 102-12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26569535

RESUMO

OBJECTIVE: Depression and Type 2 diabetes mellitus are interrelated conditions, but the underlying neurobiology is insufficiently understood. The current study compared the effects of a pharmacological manipulation with 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) that targets neurobiological processes by adenosine 5'-monophosphate-activated protein kinase activation versus exercise on depression-like behavior and nitric oxide (NO)-related measures. METHODS: A mouse model of a depression-like and insulin-resistant state, induced by the co-treatment of high-fat diet and corticosterone administration, was used to examine the antidepressant action of AICAR and exercise. RESULTS: Data showed that AICAR was a putative antidepressant in the depression-like and insulin-resistant mice (total ambulatory distance in the open-field test was 5120.69 ± 167.47 cm, mobility duration in the forced swim test was 17.61 ± 1.54 seconds, latency to feed in the novelty suppressed feeding test was 255.67 ± 37.80 seconds; all p values < .05). Furthermore, the antidepressant actions of AICAR required endothelial nitric oxide synthase activity with increased NO production in the prefrontal cortex, whereas corticosterone-induced expression of neuronal nitric oxide synthase and NO production may increase the risk of depression. In contrast to the traditional antidepressants such as ketamine and imipramine, AICAR interfered with the effects of insulin in skeletal muscle in the context of high-fat diet, consistent with the potential antidepressant effects of AICAR. Exercise also resulted in activation of adenosine 5'-monophosphate-activated protein kinase, nitric oxide synthase, and NO production (all p values < .01), which in turn may be implicated in the antidepressant effects of exercise. CONCLUSIONS: These findings suggest that NO is an essential signal mediating the antidepressant actions of AICAR. Ultimately, the concurrent effects of AICAR on brain insulin action and mitochondrial function suggest a potential of neural insulin resistance, which may contribute to our understanding of the comorbidity of depression and Type 2 diabetes.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Antidepressivos/farmacologia , Óxido Nítrico/fisiologia , Ribonucleotídeos/farmacologia , Adenilato Quinase/metabolismo , Aminoimidazol Carboxamida/farmacologia , Aminoimidazol Carboxamida/uso terapêutico , Animais , Antidepressivos/uso terapêutico , Terapia Combinada , Corticosterona/toxicidade , Transtorno Depressivo/induzido quimicamente , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/terapia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Imipramina/farmacologia , Imipramina/uso terapêutico , Resistência à Insulina , Ketamina/farmacologia , Ketamina/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/uso terapêutico , Proteínas do Tecido Nervoso/metabolismo , Condicionamento Físico Animal , Córtex Pré-Frontal/metabolismo , Ribonucleotídeos/uso terapêutico , Triazenos/farmacologia , Triazenos/uso terapêutico
11.
Nitric Oxide ; 52: 56-65, 2016 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-26686278

RESUMO

Angiotensin-1-7 [Ang-(1-7)], acting via the Mas receptor in the central nervous system, is involved in the regulation of cardiovascular activity. Nitric oxide (NO) is implicated as an important modulator in the nucleus tractus solitarii (NTS), a key region involved in control of cardiovascular activity. The aim of the present study was to determine the role of phosphatidylinositol 3-kinase (PI3K) signaling in mediating the effect of Ang-(1-7) on NO generation in the NTS. In Sprague-Dawley rats, acute injection of Ang-(1-7) into the NTS significantly increased NO generation and neuronal/endothelial NO synthase (n/eNOS) activity, which were abolished by the selective Mas receptor antagonist d-Alanine-[Ang-(1-7)] (A-779), the PI3K inhibitor LY294002, or the Akt inhibitor triciribine (TCN). Western blotting analysis further demonstrated that Ang-(1-7) significantly increased levels of Akt/NOS phosphorylation in the NTS, and Ang-(1-7)-induced e/nNOS phosphorylation was antagonized by LY294002 or TCN. Furthermore, gene knockdown of PI3K by lentivirus containing small hairpin RNA in the NTS prevented the Ang-(1-7)-induced increases in NOS/Akt phosphorylation and NO production. The physiological (in vivo) experiments showed that pretreatment with the NOS inhibitor l-NAME, LY294002, or TCN abolished the decreases in blood pressure, heart rate, and renal sympathetic nerve activity induced by Ang-(1-7) injected into the NTS. Our findings suggest that nitric oxide release meditated by the Mas-PI3K-NOS signaling pathway is involved in the cardiovascular effects of Ang-(1-7) in the NTS.


Assuntos
Angiotensina I/farmacologia , Sistema Cardiovascular/efeitos dos fármacos , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Núcleo Solitário/efeitos dos fármacos , Angiotensina I/administração & dosagem , Animais , Sistema Cardiovascular/enzimologia , Sistema Cardiovascular/metabolismo , Masculino , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/enzimologia , Núcleo Solitário/metabolismo
12.
Am J Physiol Heart Circ Physiol ; 307(2): H182-90, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24838502

RESUMO

The rostral ventrolateral medulla (RVLM) plays a key role in cardiovascular regulation. It has been reported that tonically active glutamatergic input to the RVLM is increased in hypertensive rats, whereas angiotensin-converting enzyme 2 (ACE2) in the brain has been suggested to be beneficial to hypertension. This study was designed to determine the effect of ACE2 gene transfer into the RVLM on tonically active glutamatergic input in spontaneously hypertensive rats (SHRs). Lentiviral particles containing enhanced green fluorescent protein (lenti-GFP) or ACE2 (lenti-ACE2) were injected bilaterally into the RVLM. Both protein expression and activity of ACE2 in the RVLM were increased in SHRs after overexpression of ACE2. A significant reduction in blood pressure and heart rate in SHRs was observed 6 wk after lenti-ACE2 injected into the RVLM. The concentration of glutamate in microdialysis fluid from the RVLM was significantly reduced by an average of 61% in SHRs with lenti-ACE2 compared with lenti-GFP. ACE2 overexpression significantly attenuated the decrease in blood pressure and renal sympathetic nerve activity evoked by bilateral injection of the glutamate receptor antagonist kynurenic acid (2.7 nmol in 100 nl) into the RVLM in SHRs. Therefore, we suggest that ACE2 overexpression in the RVLM attenuates the enhanced tonically active glutamatergic input in SHRs, which may be an important mechanism underlying the beneficial effect of central ACE2 to hypertension.


Assuntos
Ácido Glutâmico/metabolismo , Hipertensão/terapia , Bulbo/enzimologia , Peptidil Dipeptidase A/biossíntese , Enzima de Conversão de Angiotensina 2 , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Técnicas de Transferência de Genes , Vetores Genéticos , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Frequência Cardíaca , Humanos , Hipertensão/enzimologia , Hipertensão/genética , Hipertensão/fisiopatologia , Injeções , Ácido Cinurênico/administração & dosagem , Lentivirus/genética , Masculino , Bulbo/efeitos dos fármacos , Bulbo/fisiopatologia , Norepinefrina/urina , Peptidil Dipeptidase A/genética , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores de Glutamato/efeitos dos fármacos , Receptores de Glutamato/metabolismo , Fatores de Tempo , Regulação para Cima
13.
Clin Res Cardiol ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451260

RESUMO

This study aimed to determine the effect of supervised exercise training (SET) on cardiovascular function in patients with intermittent claudication (IC). A systematic search in MEDLINE, Embase, and Cochrane Central Register of Controlled Trials databases was conducted. Primary outcomes were systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), rate pressure product (RPP), cardiac output (CO), peak oxygen consumption (VO2peak), and heart rate variability (HRV). Secondary outcomes were maximum walking distance (MWD) and pain-free walking distance (PFWD). Outcomes were reported as weighted mean difference (WMD) between the SET group and the control group and synthesized by using the random-effects model. Seventeen RCTs with a total of 936 patients were included in this review. SET resulted in significant improvements of SBP (WMD = - 7.40, 95% CI - 10.69 ~ - 4.11, p < 0.001, I2 = 15.2%), DBP (WMD = - 1.92, 95% CI - 3.82 ~ - 0.02, p = 0.048, I2 = 0.0%), HR (WMD = - 3.38, 95% CI - 6.30 ~ - 0.46, p = 0.023, I2 = 0.0%), RPP (WMD = - 1072.82, 95% CI - 1977.05 ~ - 168.59, p = 0.020, I2 = 42.7%), and VO2peak with plantar flexion ergometer exercise (WMD = 5.57, 95% CI 1.66 ~ 9.49, p = 0.005, I2 = 62.4%), whereas CO and HRV remained statistically unaltered. SET also improved MWD (WMD = 139.04, 95% CI 48.64 ~ 229.44, p = 0.003, I2 = 79.3%) and PFWD (WMD = 40.02, 95% CI 23.85 ~ 56.18, p < 0.001, I2 = 0.0%). In conclusion, SET is effective in improving cardiovascular function in patients with IC, which was confirmed on outcomes of cardiovascular function associated with exercise ability. The findings hold out that the standard therapy of SET can improve not only walking distance but also cardiovascular function in patients with IC.

14.
Front Neurosci ; 18: 1401530, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741786

RESUMO

Introduction: Sleep insufficiency has been linked to an increased risk of high blood pressure and cardiovascular diseases. Emerging studies have demonstrated that impaired baroreflex sensitivity (BRS) is involved in the adverse cardiovascular effects caused by sleep deprivation, however, the underlying mechanisms remain unknown. Therefore, the present study aims to clarify the role of abnormal renin-angiotensin system in the nucleus tractus solitarii (NTS) in impaired BRS induced by sleep deprivation. Methods: Rats were randomly divided into two groups: normal sleep (Ctrl) and chronic sleep deprivation (CSD) group. Rats were sleep deprived by an automated sleep deprivation system. The blood pressure, heart rate, BRS, the number of c-Fos positive cells and the expression of angiotensin (Ang) II subtype 1 receptors (AT1R) in the NTS of rats were assessed. Results: Compared to Ctrl group, CSD group exhibited a higher blood pressure, heart rate, and reduced BRS. Moreover, the number of c-Fos positive cells and local field potential in the NTS in CSD group were increased compared with the Ctrl group. It was shown that the expression of the AT1R and the content of Ang II and the ratio of Ang II to Ang-(1-7) were increased in the NTS of rats in CSD group compared to Ctrl group. In addition, microinjection of losartan into the NTS significantly improved the impaired BRS caused by sleep deprivation. Discussion: In conclusion, these data suggest that the elevated AT1R expression in the NTS mediates the reduced BRS induced by chronic sleep deprivation.

15.
ACS Appl Mater Interfaces ; 16(11): 13997-14005, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38447142

RESUMO

The efficient generation and active modulation of terahertz (THz) waves are strongly required for the development of various THz applications such as THz imaging/spectroscopy and THz communication. In addition, due to the increasing degree of integration for the THz optoelectronic devices, miniaturizing the complex THz system into a compact unit is also important and necessary. Today, integrating the THz source with the modulator to develop a powerful, easy-to-adjust, and scalable or on-chip THz emitter is still a challenge. As a new type of THz emitter, a spintronic THz emitter has attracted a great deal of attention due to its advantages of high efficiency, ultrawide band, low cost, and easy integration. In this study, we have proposed a multifield-modulated spintronic THz emitter based on the VO2/Ni/Pt multilayer film structure with a wide band region of 0-3 THz. Because of the pronounced phase transition of the integrated VO2 layer, the fabricated THz emitter can be efficiently modulated via thermal or electric stimuli with a modulation depth of about one order of magnitude; the modulation depths under thermal stimulation and electrical stimulation were 91.8% and 97.3%, respectively. It is believed that this multifield modulated spintronic THz emitter will provide various possibilities for the integration of next-generation on-chip THz sources and THz modulators.

16.
Materials (Basel) ; 16(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37687745

RESUMO

Coal gangue is a kind of solid waste. A high-ductility cement-calcined coal-gangue-powder-composite-based rapid repair material (HD-RRM) was prepared by partially replacing cement with calcined coal gangue powder (CCGP) for achieving high ductility and rapid hardening and conforming to the strength requirements of pavement layers. First, the physical and chemical properties and the reactivity of the CCGP were investigated. Second, HD-RRM material was prepared, and its tensile performance characteristic parameters were investigated. Lastly, the hydration products and microstructure of HD-RRM were characterized through tests (e.g., non-evaporable water content, scanning electron microscopy (SEM), X-ray diffraction (XRD), and comprehensive thermogravimetric analysis and differential scanning calorimetry (TG-DSC)). As indicated by the experimental results, the CCGP with a particle size of 1250 mesh exhibited the maximum potential reactivity. The optimal mixing ratio for HD-RRM in the experiments comprised a water-cement ratio of 0.27, a sand-cement ratio of 0.3, a fiber volume fraction of 2%, a cement content of 70%, a CCGP content of 20%, a fly ash (FA) content of 10%, and a superplasticizer content of 0.1%. Using the abovementioned mix design, the prepared HD-RRM was endowed with a 6 h ultimate elongation of 2.75%, an ultimate tensile strength of 7.58 MPa, a compressive strength of 45.4 MPa, and an average crack width of 125.53 µm, which meets the requirements of repair materials and provides a design method for CCGP resource utilization and asphalt concrete road and bridge deck repair.

17.
Sci Rep ; 13(1): 11659, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468556

RESUMO

In some complicated situations, decompression sickness (DCS) combined with other injuries, such as irradiation, will seriously endanger life safety. However, it is still unclear whether irradiation will increase the incidence of DCS. This study was designed to investigate the damage effects of irradiation on decompression injury and the underlying mechanism. Sprague-Dawley rats were exposed to irradiation followed by hyperbaric decompressing and the mortality and decompression symptoms were observed. Lung tissue and bronchoalveolar lavage fluid were collected to detect the lung lesion, inflammation response, activity of the angiotensin system, oxidative stress, and relative signal pathway by multiple methods, including Q-PCR, western blot, and ELISA. As a result, pre-exposure to radiation significantly exacerbated disease outcomes and lung lesions of DCS. Mechanically, the up-regulation of angiotensin-converting enzyme expression and angiotensin II levels was responsible for the exacerbated DCS and lung lesions caused by predisposing irradiation exposure. Oxidative stress and PI3K/AKT signal pathway activation in pulmonary tissue were enhanced after irradiation plus decompression treatment. In conclusion, our results suggested that irradiation could exacerbate lung injury and the outcomes of DCS by activating the angiotensin system, which included eliciting oxidative stress and activation of the PI3K/AKT signal pathway.


Assuntos
Doença da Descompressão , Ratos , Animais , Ratos Sprague-Dawley , Doença da Descompressão/etiologia , Doença da Descompressão/metabolismo , Angiotensina II , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
18.
Front Cardiovasc Med ; 10: 1084611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051068

RESUMO

Background: Cold exposure has been considered an essential risk factor for the global disease burden, while its role in cardiovascular diseases is still underappreciated. The increase in frequency and duration of extreme cold weather events like cold spells makes it an urgent task to evaluate the effects of ambient cold on different types of cardiovascular disease and to understand the factors contributing to the population's vulnerability. Methods: In the present systematic review and meta-analysis, we searched PubMed, Scopus, and Cochrane. We included original research that explored the association between cold exposure (low temperature and cold spell) and cardiovascular disease outcomes (mortality and morbidity). We did a random-effects meta-analysis to pool the relative risk (RR) of the association between a 1°C decrease in temperature or cold spells and cardiovascular disease outcomes. Results: In total, we included 159 studies in the meta-analysis. As a result, every 1°C decrease in temperature increased cardiovascular disease-related mortality by 1.6% (RR 1.016; [95% CI 1.015-1.018]) and morbidity by 1.2% (RR 1.012; [95% CI 1.010-1.014]). The most pronounced effects of low temperatures were observed in the mortality of coronary heart disease (RR 1.015; [95% CI 1.011-1.019]) and the morbidity of aortic aneurysm and dissection (RR 1.026; [95% CI 1.021-1.031]), while the effects were not significant in hypertensive disease outcomes. Notably, we identified climate zone, country income level and age as crucial influential factors in the impact of ambient cold exposure on cardiovascular disease. Moreover, the impact of cold spells on cardiovascular disease outcomes is significant, which increased mortality by 32.4% (RR 1.324; [95% CI 1.2341.421]) and morbidity by 13.8% (RR 1.138; [95% CI 1.015-1.276]). Conclusion: Cold exposure could be a critical risk factor for cardiovascular diseases, and the cold effect varies between disease types and climate zones. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO, identifier: CRD42022347247.

19.
Biomedicines ; 10(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35203611

RESUMO

Heart failure (HF) is known as the final manifestation of cardiovascular diseases. Although cellular heterogeneity of the heart is well understood, the phenotypic transformation of cardiac cells in progress of HF remains obscure. This study aimed to analyze phenotypic transformation of cardiac cells in HF through human single-cell RNA transcriptome profile. Here, phenotypic transformation of cardiomyocytes (CMs), endothelial cells (ECs), and fibroblasts was identified by data analysis and animal experiments. Abnormal myosin subunits including the decrease in Myosin Heavy Chain 6, Myosin Light Chain 7 and the increase in Myosin Heavy Chain 7 were found in CMs. Two disease phenotypes of ECs named inflammatory ECs and muscularized ECs were identified. In addition, myofibroblast was increased in HF and highly associated with abnormal extracellular matrix. Our study proposed an integrated map of phenotypic transformation of cardiac cells and highlighted the intercellular communication in HF. This detailed definition of cellular transformation will facilitate cell-based mapping of novel interventional targets for the treatment of HF.

20.
Front Cardiovasc Med ; 9: 974035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312232

RESUMO

Cardiovascular disease is the leading cause of death globally among non-communicable diseases, which imposes a serious socioeconomic burden on patients and the healthcare system. Therefore, finding new strategies for preventing and treating cardiovascular diseases is of great significance in reducing the number of deaths and disabilities worldwide. Dipeptidyl peptidase 3 (DPP3) is the first zinc-dependent peptidase found among DPPs, mainly distributes within the cytoplasm. With the unique HEXXGH catalytic sequence, it is associated with the degradation of oligopeptides with 4 to 10 amino acids residues. Accumulating evidences have demonstrated that DPP3 plays a significant role in almost all cellular activities and pathophysiological mechanisms. Regarding the role of DPP3 in cardiovascular diseases, it is currently mainly used as a biomarker for poor prognosis in patients with cardiovascular diseases, suggesting that the level of DPP3 concentration in plasma is closely linked to the mortality of diseases such as cardiogenic shock and heart failure. Interestingly, it has been reported recently that DPP3 regulates blood pressure by interacting with the renin-angiotensin system. In addition, DPP3 also participates in the processes of pain signaling, inflammation, and oxidative stress. But the exact mechanism by which DPP3 affects cardiovascular function is not clear. Hence, this review summarizes the recent advances in the structure and catalytic activity of DPP3 and its extensive biological functions, especially its role as a therapeutic target in cardiovascular diseases. It will provide a theoretical basis for exploring the potential value of DPP3 as a therapeutic target for cardiovascular diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA