Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 126: 556-564, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503781

RESUMO

Nickel (hydr)oxide (NiOH) is known to be good co-catalyst for the photoelectrochemical oxidation of water, and for the photocatalytic oxidation of organics on different semiconductors. Herein we report a greatly improved activity of Bi2MoO6 (BMO) by nickel hexammine perchlorate (NiNH). Under visible light, phenol oxidation on BMO was slow. After NiNH, NiOH, and Ni2+ loading, a maximum rate of phenol oxidation increased by factors of approximately 16, 8.8, and 4.7, respectively. With a BMO electrode, all catalysts inhibited O2 reduction, enhanced water (photo-)oxidation, and facilitated the charge transfer at solid-liquid interface, respectively, the degree of which was always NiNH > NiOH > Ni2+. Solid emission spectra indicated that all catalysts improved the charge separation of BMO, the degree of which also varied as NiNH > NiOH > Ni2+. Furthermore, after a phenol-free aqueous suspension of NiNH/BMO was irradiated, there was a considerable Ni(III) species, but a negligible NH2 radical. Accordingly, a plausible mechanism is proposed, involving the hole oxidation of Ni(II) into Ni(IV), which is reactive to phenol oxidation, and hence promotes O2 reduction. Because NH3 is a stronger ligand than H2O, the Ni(II) oxidation is easier for Ni(NH3)6+ than for Ni(H2O)6+. This work shows a simple route how to improve BMO photocatalysis through a co-catalyst.


Assuntos
Fenol , Água , Níquel , Fenóis , Luz
2.
Photochem Photobiol Sci ; 20(8): 1099-1107, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34370291

RESUMO

Copper ions in aqueous solution are known to promote organic oxidation in semiconductor photocatalysis, but the counter anions seem to be important as well. In this work, the performance of Cu(ClO4)2 in presence of several anions in sodium forms (F-, Cl-, ClO4-, NO3-, and SO42-) has been examined. Phenol oxidation in aqueous solution (pH 4) under UV light was used as model reaction and TiO2 in the forms of anatase (AT) and rutile (RT) as photocatalysts. On the addition of 0.1-5 mM Cu2+, the reactions on AT and RT all increased. On the addition of 1 mM anions, reactions on AT increased by F-and SO42-, but reactions on RT all decreased. In presence of 3 mM Cu2+, however, reactions on AT and RT all decreased by 1 mM anions except NO3-. Such anion effects were also observed for H2 production on AT and RT in presence of Cu2+ and 10% methanol. A possible mechanism for the positive and negative anion effects is discussed. This work indicates that the formation of a Cu(II)/Cu(I) complex with anions weakens the positive effect of copper ions on organic oxidation in TiO2 photocatalysis.

3.
Sci Total Environ ; 896: 165061, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37353015

RESUMO

In recent years, the escalating ozone (O3) concentration has significantly damaged human health. The machine learning models are widely used to estimate ground-level O3 concentrations, but the spatial and temporal features in the data are less considered. To address the issue, this study proposed a novel framework named MixNet to estimate daily O3 concentration from 2020 to 2021 over the Yangtze River Delta. The MixNet utilized image convolution to extract the potential spatial information related to O3 fully. The temporal features were extracted by a Long Short-Term Memory (LSTM). A U-Net, a new jump connection method with an attention mechanism and residual blocks, facilitated a more comprehensive extraction of spatial features in the data. The extracted temporal and spatial features were fused to estimate ground-level O3. Meanwhile, a novel training method was proposed to enhance the accuracy of MixNet. The daily mean O3 maps have high validation results in comparison with ground-level O3 measurement, with R2 (RMSE) of 0.903 (14.511 µg/m3) for sample-based validation, 0.831 (19.036 µg/m3) for site-based validation, and 0.712 (25.108 µg/m3) for time-based validation. The season-average maps indicate that O3 concentration is summer > autumn > spring > winter. The highest value was 137.41 µg/m3 in the summer of 2021 over the Yangtze River Delta urban agglomeration, and the lowest value was 52.73 µg/m3 in winter 2020. The MixNet showed better performance compared with other models, and thus the "point-plane image thinking" will contribute to future studies in developing better methods to estimate atmospheric pollutants.

4.
Nat Commun ; 14(1): 6639, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863917

RESUMO

Type 1 conventional dendritic cells (cDC1) are the most efficient cross-presenting cells that induce protective cytotoxic T cell response. However, the regulation of their homeostasis and function is incompletely understood. Here we observe a selective reduction of splenic cDC1 accompanied by excessive cell death in mice with Zeb1 deficiency in dendritic cells, rendering the mice more resistant to Listeria infection. Additionally, cDC1 from other sources of Zeb1-deficient mice display impaired cross-presentation of exogenous antigens, compromising antitumor CD8+ T cell responses. Mechanistically, Zeb1 represses the expression of microRNA-96/182 that target Cybb mRNA of NADPH oxidase Nox2, and consequently facilitates reactive-oxygen-species-dependent rupture of phagosomal membrane to allow antigen export to the cytosol. Cybb re-expression in Zeb1-deficient cDC1 fully restores the defective cross-presentation while microRNA-96/182 overexpression in Zeb1-sufficient cDC1 inhibits cross-presentation. Therefore, our results identify a Zeb1-microRNA-96/182-Cybb pathway that controls cross-presentation in cDC1 and uncover an essential role of Zeb1 in cDC1 homeostasis.


Assuntos
MicroRNAs , Fatores de Transcrição , Animais , Camundongos , Antígenos/metabolismo , Linfócitos T CD8-Positivos , Células Dendríticas , Homeostase , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo
5.
ACS Omega ; 7(18): 15901-15908, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35571852

RESUMO

Transition-metal chalcogenides (TMC) have been widely studied as active electrocatalysts toward the hydrogen evolution reaction due to their suitable d-electron configuration and relatively high electrical conductivity. Herein, we develop a feasible method to synthesize an orthorhombic phase of CoSe2 (o-CoSe2) from the regeneration of Co0.85Se, where the temperature plays a key role in controlling the structure transformation. To the best of our knowledge, this is the first report about this synthetic route for o-CoSe2. The resulting o-CoSe2 catalysts exhibit enhanced hydrogen evolution reaction performance with an overpotential of 220 mV to reach 10 mA cm-2 in 1.0 M KOH. Density functional theory calculations further reveal that the change in the Gibbs free energy of hydrogen, water adsorption energy, and the downshifted d-band center make o-CoSe2 more suitable for accelerating the HER process.

6.
ACS Omega ; 6(48): 33057-33066, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34901657

RESUMO

As a very attractive clean energy, hydrogen has a high energy density and great potential to achieve zero pollution emission. Therefore, the preparation of hydrogen evolution electrocatalysts with excellent performance is an urgent task to ameliorate the global energy shortage and environmental pollution. Here, a trace amount of NiP2 coupled with CoMoP nanosheets (NCMP) was synthesized by the one-step hydrothermal method and low-temperature phosphidation. Studies have found that although the dosage of NiP2 is very low, its appearance has been efficient to improve the hydrogen evolution reaction (HER) performance of CoMoP, which may be induced by the synergistic effect of the two different components NiP2 and CoMoP. To find the superior catalyst, the effect of Ni content on the catalyst performance is also studied, and it is found that when the dosage of Ni is 0.02 mM, NCMP-2 (2 means 0.02 mM) displays the most outstanding overpotential (10 mA cm-2) of 46 mV.

7.
Sci Rep ; 10(1): 5861, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245986

RESUMO

Laser-driven positron production is expected to provide a non-radioactive, controllable, radiation tunable positron source in laboratories. We propose a novel approach of positron production by using a femto-second laser irradiating a microstructured surface target combined with a high-Z converter. By numerical simulations, it is shown that both the temperature and the maximum kinetic energy of electrons can be greatly enhanced by using a microstructured surface target instead of a planar target. When these energetic electrons shoot into a high Z converter, copious positrons are produced via Bethe-Heitler mechanism. With a laser (wavelength λ = 1 µm) with duration ~36 fs, intensity ~5.5 × 1020 W/cm2 and energy ~6 Joule, ~109 positrons can be obtained.

8.
Insect Sci ; 25(5): 916-926, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28371321

RESUMO

Sometimes, extreme weather is vital for the population survival of migratory insects by causing sudden population collapse or outbreak. Several studies have shown that rice planthopper migration was significantly influenced by typhoons in eastern Asia. Most typhoons occur in the summer, especially in August. In August, brown planthopper Nilaparvata lugens (Stål) migrates northward or southward depending on wind direction, and thus typhoons can potentially influence its migration process and population distribution. However, this has not yet been studied. This paper reported a case study on the effects of Typhoon Soudelor on the summer migration of N. lugens in eastern China in 2015. The migration pathways of N. lugens were reconstructed for the period under the influence of a typhoon by calculating the trajectories and migration events in eight counties of the Yangtze River Valley region with ancillary information. Trajectory modelling showed that most migrants took short distance migrations (less than 200 km) under the influence of the Typhoon Soudelor. Numerous N. lugens migrants were concentrated and deposited at the rear of the typhoon during the last 5 days of Typhoon Soudelor on August 9-13 due to horizontal convergence, and this led to an outbreak population. These results indicated that the N. lugens population was redistributed by the typhoon in the summer and that the population dynamics at the rear of a typhoon should be kept under close surveillance. This study provided insight into migratory organisms adapting to atmospheric features.


Assuntos
Distribuição Animal , Migração Animal , Tempestades Ciclônicas , Hemípteros/fisiologia , Animais , China , Hemípteros/crescimento & desenvolvimento , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Dinâmica Populacional
9.
ACS Appl Mater Interfaces ; 9(16): 14103-14111, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28379680

RESUMO

Hierarchical structured ZnFe2O4@SiO2@RGO core-shell nanocomposites were prepared via a "coating-coating" route, and its structure, composition and electromagnetic properties were characterized. Compared with the binary composites of ZnFe2O4@SiO2, the hierarchical ZnFe2O4@SiO2@RGO ternary composites exhibited enhanced electromagnetic wave (EMW) absorption properties in terms of the effective bandwidth and minimum reflection loss (RL). Furthermore, EMW absorption properties of the prepared samples can be tuned by changing RGO content and thickness of SiO2 layer to reach the best impedance match. The minimum RL of the sample with a thickness of 2.8 mm can reach -43.9 dB at 13.9 GHz, and its effective bandwidth (RL ≤ -10 dB) was up to 6 GHz. Hence, the obtained products can be a new candidate for lightweight EMW absorbing materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA