Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38653491

RESUMO

Coronaviruses have threatened humans repeatedly, especially COVID-19 caused by SARS-CoV-2, which has posed a substantial threat to global public health. SARS-CoV-2 continuously evolves through random mutation, resulting in a significant decrease in the efficacy of existing vaccines and neutralizing antibody drugs. It is critical to assess immune escape caused by viral mutations and develop broad-spectrum vaccines and neutralizing antibodies targeting conserved epitopes. Thus, we constructed CovEpiAb, a comprehensive database and analysis resource of human coronavirus (HCoVs) immune epitopes and antibodies. CovEpiAb contains information on over 60 000 experimentally validated epitopes and over 12 000 antibodies for HCoVs and SARS-CoV-2 variants. The database is unique in (1) classifying and annotating cross-reactive epitopes from different viruses and variants; (2) providing molecular and experimental interaction profiles of antibodies, including structure-based binding sites and around 70 000 data on binding affinity and neutralizing activity; (3) providing virological characteristics of current and past circulating SARS-CoV-2 variants and in vitro activity of various therapeutics; and (4) offering site-level annotations of key functional features, including antibody binding, immunological epitopes, SARS-CoV-2 mutations and conservation across HCoVs. In addition, we developed an integrated pipeline for epitope prediction named COVEP, which is available from the webpage of CovEpiAb. CovEpiAb is freely accessible at https://pgx.zju.edu.cn/covepiab/.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Epitopos , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Epitopos/química , Epitopos/genética , Coronavirus/imunologia , Coronavirus/genética , Bases de Dados Factuais , Reações Cruzadas/imunologia
2.
Nano Lett ; 24(25): 7609-7615, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38861682

RESUMO

Long-wave infrared (LWIR) imaging, or thermal imaging, is widely applied in night vision and security monitoring. However, the widespread use of LWIR imagers is impeded by their bulky size, considerable weight, and high cost. While flat meta-optics present a potential solution to these limitations, existing pure LWIR meta-optics face constraints such as severe chromatic or coma aberrations. Here, we introduce an approach utilizing large-scale hybrid meta-optics to address these challenges and demonstrate the achromatic, coma-corrected, and polarization-insensitive thermal imaging. The hybrid metalens doublet is composed of a metasurface corrector and a refractive lens, featuring a full field-of-view angle surpassing 20° within the 8-12 µm wavelength range. Employing this hybrid metalens doublet, we showcase high-performance thermal imaging capabilities both indoors and outdoors, effectively capturing ambient thermal radiation. The proposed hybrid metalens doublet holds considerable promise for advancing miniaturized, lightweight, and cost-effective LWIR optical imaging systems.

3.
J Am Chem Soc ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607259

RESUMO

Chemical pressure generated through ion doping into crystal lattices has been proven to be conducive to exploration of new matter, development of novel functionalities, and realization of unprecedented performances. However, studies are focusing on one-time doping, and there is a lack of both advanced investigations for multiple doping and sophisticated strategies to precisely and quantitatively track the gradual functionality evolution along with progressive chemical pressure implementation. Herein, high-valent Y3+ and equal-valent Mg2+ is successively doped to replace multiple Ca sites in Ca10.5(PO4)7:Eu2+. The luminescence evolution of Eu2+ serves as an optical probe, allowing step-by-step and atomic-level tracking of the site occupation of Y3+ and Mg2+, interassociation of Ca sites, and ultimately functionality improvement. The resulting Ca8MgY(PO4)7:Eu2+ displays a record-high relative sensitivity for optical thermometry. Utilization of the environment-sensitive emission of Eu2+ as a luminescent probe has offered a unique approach to monitoring structure-functionality evolution in vivo with atomic precision, which shall also be extended to optimization of other functionalities such as ferroelectricity, conductivity, thermoelectricity, and catalytic activity through precise control over atomic diffusion in other types of substances.

4.
J Am Chem Soc ; 146(10): 6530-6535, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38410847

RESUMO

Thermal quenching (TQ) has been naturally entangling with luminescence since its discovery, and lattice vibration, which is characterized as multiphonon relaxation (MPR), plays a critical role. Considering that MPR may be suppressed under exterior pressure, we have designed a core/shell upconversion luminescence (UCL) system of α-NaYF4:Yb/Ln@ScF3 (Ln = Ho, Er, and Tm) with positive/negative thermal expansion behavior so that positive thermal expansion of the core will be restrained by negative thermal expansion of the shell when heated. This imposed pressure on the crystal lattice of the core suppresses MPR, reduces the amount of energy depleted by TQ, and eventually saves more energy for luminescing, so that anti-TQ or even thermally enhanced UCL is obtained.

5.
J Am Chem Soc ; 146(25): 17474-17486, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38860830

RESUMO

Soluble redox-active polymers (RAPs) enable size-exclusion nonaqueous redox flow batteries (NaRFBs) which promise high energy density. Pendants along the RAPs not only store charge but also engage in electron transfer to varying extents based on their designs. Here, we explore these phenomena in Metal-containing Redox Active Polymers (M-RAPs, M = Ru, Fe, Co). We assess by using cyclic voltammetry and chronoamperometry with ultramicroelectrodes the current response to electrolyte concentration spanning 3 orders of magnitude. Currents scaled as Ru-RAP > Fe-RAP ≫ Co-RAP, consistent with electron self-exchange trends in the small molecule analogues of the MII/III redox pair. Varying the ionic strength of the electrolyte also revealed nonmonotonic behavior, evidencing the impact of polyelectrolytic dynamics on M-RAP redox response. We developed a model to account for the behavior by combining kinetic Monte Carlo and Brownian dynamics near a boundary representing an electrode. While 1D pendant-to-pendant charge transfer along the chain is not a strong function of electrolyte concentration, the microstructure of the RAP at different electrolyte concentrations is decisively impacted, yielding qualitative trends to those observed experimentally. M-RAP size-exclusion NaRFBs using a poly viologen as negolyte varied in average potential with ∼1.54 V for Ru-RAP, ∼1.37 V for Fe-RAP, and ∼0.52 V for Co-RAP. Comparison of batteries at their optimal and suboptimal solution conditions as gauged from analytical experiments showed clear correlations in performance. This work provides a blueprint for understanding the factors underpinning charge transfer in solutions of RAPs for batteries and beyond.

6.
Clin Immunol ; 259: 109875, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141747

RESUMO

OBJECTIVE: This study aimed to explore the association between kidney function and the risk of relapse as well as prognosis in patients with aquaporin-4 (AQP4)-immunoglobulin G (IgG)-seropositive neuromyelitis optica spectrum disorder (NMOSD). METHODS: We focused on patients experiencing their first onset of AQP4-IgG-seropositive NMOSD. Data on demographics, disease characteristics, and kidney function were collected, with the primary assessment utilizing the estimated glomerular filtration rate (eGFR). Associations between eGFR and relapse risk were examined using multivariate Cox proportional hazards regression models. Additionally, logistic regression models were employed to evaluate the impact of eGFR on clinical prognosis. RESULTS: Our analysis revealed glomerular hyperfiltration and impaired urine concentrating ability in patients with AQP4-IgG-seropositive NMOSD. Multivariate Cox proportional hazards regression demonstrated a positive correlation between eGFR and the risk of relapse. Logistic regression analysis further identified higher eGFR as an independent predictor of disease relapse and prognosis in AQP4-IgG-seropositive NMOSD patients. CONCLUSIONS: The eGFR of patients with AQP4-IgG-seropositive NMOSD emerges as a potential diagnostic biomarker for this condition, indicating its significance in predicting both relapse risk and clinical prognosis.


Assuntos
Neuromielite Óptica , Humanos , Aquaporina 4 , Autoanticorpos , Taxa de Filtração Glomerular , Imunoglobulina G , Prognóstico
7.
Small ; 20(29): e2310217, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38361221

RESUMO

In this work, multi-layer Ti3C2 - carbon nanotubes - gold nanoparticles (Ti3C2-CNTs-Au) and cyclodextrin metal-organic framework - carbon nanotubes (CD-MOF-CNTs) have been prepared by in situ growth method and used to construct the ultra-sensitive rutin electrochemical sensor for the first time. Among them, the large number of metal active sites of Ti3C2, the high electron transfer efficiency of CNTS, and the good catalytic properties of AuNPs significantly enhance the electrochemical properties of the composite carbon nanomaterials. Interestingly, CD-MOF has a unique host-guest recognition and a large number of cavities, molecular gaps, and surface reactive groups, which gives the composite outstanding accumulation properties and selectivity for rutin. Under the optimized conditions, the constructed novel sensor has satisfactory detection performance for rutin in the range of 2 × 10-9 to 8 × 10-7 M with a limit of detection of 6.5 × 10-10 M. In addition, the sensor exhibits amazing anti-interference performance against rutin in some flavonoid compounds and can be used to test natural plant samples (buckwheat, Cymbopogon distans, and flos sophorae immaturus). This work has promising applications in the field of environmental and food analysis, and exploring new directions for the application of Mxene-based composites.


Assuntos
Ciclodextrinas , Ouro , Nanotubos de Carbono , Rutina , Titânio , Rutina/química , Rutina/análise , Ouro/química , Ciclodextrinas/química , Nanotubos de Carbono/química , Titânio/química , Estruturas Metalorgânicas/química , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos
8.
Microb Pathog ; : 106878, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39173851

RESUMO

Apple Valsa canker disease, caused by Valsa mali Miyabe et Yamada, severely endangers the healthy growth of apple trees. The Som1, located downstream of the cyclic AMP-dependent protein kinase A (cAMP-PKA) pathway, plays crucial roles in the growth, development, morphological differentiation, and virulence of filamentous fungi. In this study, we identify and functionally characterize VmSom1, a homolog of Som1, in Valsa mali. The VmSom1 gene is located on chromosome 12, encoding an 824 amino acid protein. Phylogenetic analysis reveals VmSom1 as a fungal Som1 homolog. The VmSom1 deletion mutants exhibit slower growth rates and fail to produce pycnidia. Additionally, their hyphal growth is significantly inhibited on media containing Calcofluor White, Congo Red, NaCl, and sorbitol. The growth rate of VmSom1 deletion mutants is reduced on maltose, lactose, sucrose and fructose media but increases on glucose medium. Moreover, the mycelial growth rate of the VmSom1 deletion mutant is significantly lower than that of the wild-type strain in peptone, NH4SO4, NaNO3, and no nitrogen. Notably, the distances between the septa increase, and chitin concentration shifts to the hyphal tip in the VmSom1 deletion mutant. Furthermore, compared with the wild-type strain, the VmSom1 deletion mutant exhibits fewer diseased spots on apple fruit and branches. Overall, our findings demonstrate that VmSom1 is involved in regulating the growth and development, colony surface hydrophobicity, osmotic stress, cell wall integrity maintenance, carbon and nitrogen source utilization, septa formation, and virulence of V. mali.

9.
Opt Lett ; 49(8): 2053-2056, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621074

RESUMO

Plasmonic nanosensors and the dynamic control of light fields are of the utmost significance in the field of micro- and nano-optics. Here, our study successfully demonstrates a plasmonic nanosensor in a compact coupled resonator system and obtains the pressure-induced transparency phenomenon for the first time to our knowledge. The proposed structure consists of a groove and slot cavity coupled in the metal-insulator-metal waveguide, whose mechanical and optical characteristics are investigated in detail using the finite element method. Simulation results show that we construct a quantitative relationship among the resonator deformation quantity, the applied pressure variation, and the resonant wavelength offset by combining the mechanical and optical properties of the proposed system. The physical features contribute to highly efficient plasmonic nanosensors for refractive index and optical pressure sensing with sensitivity of 1800 nm/RIU and 7.4 nm/MPa, respectively. Furthermore, the light waves are coupled to each other in the resonators, which are detuned due to the presence of pressure, resulting in the pressure-induced transparency phenomenon. It is noteworthy to emphasize that, unlike previously published works, our numerical results take structural deformation-induced changes in optical properties into account, making them trustworthy and practical. The proposed structure introduces a novel, to the best of our knowledge, approach for the dynamic control of light fields and has special properties that can be utilized for the realization of various integrated components.

10.
Opt Lett ; 49(11): 2930-2933, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824295

RESUMO

We propose a plasmonic nanolaser based on a metal-insulator-semiconductor-insulator-metal (MISIM) structure, which effectively confines light on a subwavelength scale (∼λ/14). As the pump power increases, the proposed plasmonic nanolaser exhibits broadband output characteristics of 20 nm, and the maximum output power can reach 20 µW. Furthermore, the carrier lifetime at the upper energy level in our proposed structure is measured to be about 400 fs using a double pump-probe excitation. The ultrafast characteristic is attributed to the inherent Purcell effect of plasmonic systems. Our work paves the way toward deep-subwavelength mode confinement and ultrafast femtosecond plasmonic lasers in spaser-based interconnected, eigenmode engineering of plasmonic nanolasers, nano-LEDs, and spontaneous emission control.

11.
Biomacromolecules ; 25(4): 2587-2596, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38527924

RESUMO

In response to increasing antibiotic resistance and the pressing demand for safer infected wound care, probiotics have emerged as promising bioactive agents. To address the challenges associated with the safe and efficient application of probiotics, this study successfully loaded metabolites from Lacticaseibacillus rhamnosus GG (LGG) into a gelatin cross-linked macromolecular network by an in situ blending and photopolymerization method. The obtained LM-GelMA possesses injectability and autonomous healing capabilities. Importantly, the incorporation of LGG metabolites endows LM-GelMA with excellent antibacterial properties against Staphylococcus aureus and Escherichia coli, while maintaining good biocompatibility. In vivo assessments revealed that LM-GelMA can accelerate wound healing by mitigating infections induced by pathogenic bacteria. This is accompanied by a reduction in the expression of key proinflammatory cytokines such as TNF-α, IL-6, VEGFR2, and TGF-ß, leading to increased re-epithelialization and collagen formation. Moreover, microbiological analysis confirmed that LM-GelMA can modulate the abundance of beneficial wound microbiota at family and genus levels. This study provides a facile strategy and insights into the functional design of hydrogels from the perspective of wound microenvironment regulation.


Assuntos
Lacticaseibacillus rhamnosus , Cicatrização , Antibacterianos/farmacologia , Citocinas , Escherichia coli , Hidrogéis/farmacologia
12.
Pharmacol Res ; 203: 107137, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522761

RESUMO

Peptide stapling, by employing a stable, preformed alpha-helical conformation, results in the production of peptides with improved membrane permeability and enhanced proteolytic stability, compared to the original peptides, and provides an effective solution to accelerate the rapid development of peptide drugs. Various reviews present peptide stapling chemistries, anchoring residues and one- or two-component cyclization, however, therapeutic stapled peptides have not been systematically summarized, especially focusing on various disease-related targets. This review highlights the latest advances in therapeutic peptide drug development facilitated by the application of stapling technology, including different stapling techniques, synthetic accessibility, applicability to biological targets, potential for solving biological problems, as well as the current status of development. Stapled peptides as therapeutic drug candidates have been classified and analysed mainly by receptor- and ligand-based stapled peptide design against various diseases, including cancer, infectious diseases, inflammation, and diabetes. This review is expected to provide a comprehensive reference for the rational design of stapled peptides for different diseases and targets to facilitate the development of therapeutic peptides with enhanced pharmacokinetic and biological properties.


Assuntos
Peptídeos , Humanos , Animais , Peptídeos/uso terapêutico , Peptídeos/química , Peptídeos/farmacologia , Desenho de Fármacos
13.
Inorg Chem ; 63(32): 15098-15104, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39072372

RESUMO

Interfacial strain engineering can induce structural transformation and introduce new physical properties into materials, which is an effective method to prepare new multifunctional materials. However, interfacial strain has a limited spatial impact size. For example, in 2D thin films, the critical thickness of biaxial strain is typically less than 20 nm, which is not conducive to the maintenance of a strained structure and properties in thick film materials. The construction of a 3D interface can solve this problem. The large lattice mismatch between the BaZrO3 thin film and the substrate can induce the out-of-phase boundary (OPB) structure, which can extend along the thickness direction with the stacking of atoms. The lattice distortion at the OPB structure can provide a clamping effect for each layer of atoms, thus expanding the spatial influence range of biaxial strain. As a result, the uniform in-plane strain distribution and strain-induced ferroelectricity (Pr = 13 µC/cm2) are maintained along the thickness direction in BaZrO3 films.

14.
BMC Cardiovasc Disord ; 24(1): 267, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773388

RESUMO

BACKGROUND: The effect of nonalcoholic fatty liver disease (NAFLD) on major adverse cardiovascular events (MACEs) can be influenced by the degree of coronary artery stenosis. However, the association between the severity of NAFLD and MACEs in patients who underwent coronary computed tomography angiography (CCTA) is unclear. METHODS: A total of 341 NAFLD patients who underwent CCTA were enrolled. The severity of NAFLD was divided into mild NAFLD and moderate-severe NAFLD by abdominal CT results. The degree of coronary artery stenosis was evaluated by using Coronary Artery Disease Reporting and Data System (CAD-RADS) category. Cox regression analysis and Kaplan-Meier analysis were used to assess poor prognosis. RESULTS: During the follow-up period, 45 of 341 NAFLD patients (13.20%) who underwent CCTA occurred MACEs. The severity of NAFLD (hazard ratio [HR] = 2.95[1.54-5.66]; p = 0.001) and CAD-RADS categories 3-5 (HR = 16.31[6.34-41.92]; p < 0.001) were independent risk factors for MACEs. The Kaplan-Meier analysis showed that moderate to severe NAFLD patients had a worsen prognosis than mild NAFLD patients (log-rank p < 0.001). Moreover, the combined receiver operating characteristic curve of the severity of NAFLD and CAD-RADS category showed a good predicting performance for the risk of MACEs, with an area under the curve of 0.849 (95% CI = 0.786-0.911). CONCLUSION: The severity of NAFLD was independent risk factor for MACEs in patients with obstructive CAD, having CAD-RADS 3-5 categories on CCTA.


Assuntos
Angiografia por Tomografia Computadorizada , Angiografia Coronária , Doença da Artéria Coronariana , Estenose Coronária , Hepatopatia Gordurosa não Alcoólica , Valor Preditivo dos Testes , Índice de Gravidade de Doença , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/complicações , Masculino , Feminino , Pessoa de Meia-Idade , Fatores de Risco , Medição de Risco , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/mortalidade , Doença da Artéria Coronariana/complicações , Idoso , Prognóstico , Estenose Coronária/diagnóstico por imagem , Estenose Coronária/mortalidade , Estudos Retrospectivos , Fatores de Tempo
15.
Curr Genomics ; 25(1): 2-11, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38544826

RESUMO

Objectives: This research aimed to study the expression of PRDX6 mRNA in hepatocellular carcinoma (HCC) and its effect on the prognosis of HCC. Moreover, the effect of PRDX6 gene knockdown on the proliferation, migration, and invasion of HepG2 cells mediated by lentivirus was also examined. This study offers a theoretical and experimental basis for further research on the mechanism of PRDX6 in liver cancer and new methods for clinical diagnosis and treatment. Methods: RNA sequence data of 369 HCC patients were screened through the TCGA database, and the expression and clinical characteristics of PRDX6 mRNA were analyzed based on high-throughput RNA sequencing data. HepG2 cells were divided into WT, sh-NC and sh-PRDX6 groups. Real-time PCR and Western blot were used to detect the expression levels of the PRDX6 gene and protein, respectively. CCK8 method was used to detect the proliferation activity of HepG2 cells, scratch healing test was used to detect the migration ability, Transwell chamber was used to detect the invasion ability, and Western blot was used to detect the expression levels of PI3K/Akt/mTOR signaling pathway and Notch signaling pathway-related proteins. Results: The expression of PRDX6 was significantly correlated with the gender, race, clinical stage, histological grade, and survival time of HCC patients (P < 0.05). Compared with that in WT and sh-NC groups, the expression level of PRDX6 protein in HCC patients was significantly lower (P < 0.01), the proliferation activity of HCC cells was significantly decreased (P < 0.05), and the migration and invasion ability was significantly decreased (P < 0.05) in the sh-PRDX6 group. The expression levels of PI3K, p-Akt, p-mTOR, Notch1, and Hes1 proteins in the sh-PRDX6 group were significantly lower than those in WT and sh-NC groups (P < 0.05). Conclusion: The expression of PRDX6 may be closely related to the prognosis of HCC. Lentivirus-mediated PRDX6 knockdown can inhibit the proliferation, migration and invasion of HCC cells, which may be related to its regulating the PI3K/Akt/mTOR and Notch1 signaling pathways. PRDX6 is expected to be a new target for the diagnosis and treatment of liver cancer.

16.
Nutr J ; 23(1): 76, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39010125

RESUMO

PURPOSE: This study aimed to identify and quantify the association and investigate whether serum vitamin B12 alone or vitamin B12 combined with folate and plasma total homocysteine (tHcy) levels could be used to predict the risk of acute ischemic stroke. MATERIALS AND METHODS: This retrospective case-control study was conducted in the Department of Neurology, First Affiliated Hospital of Chongqing Medical University. It included 259 inpatients experiencing their first-ever acute ischemic stroke and 259 age-matched, sex-matched healthy controls. Patients were categorized into groups based on the etiology of their stroke: large-artery atherosclerosis (LAAS, n = 126), cardio embolism (CEI, n = 35), small vessel disease (SVD, n = 89), stroke of other determined etiology (ODE, n = 5), and stroke of undetermined etiology (UDE, n = 4). The associations of serum vitamin B12, folate, and plasma tHcy levels with the risk of ischemic stroke were evaluated using multivariable logistic regression analysis. Receiver operator characteristic (ROC) curves were used to assess the diagnostic power of vitamin B12, folate, and tHcy levels for ischemic stroke. RESULTS: Serum vitamin B12 and folate levels were significantly lower in ischemic stroke patients compared to controls, while plasma tHcy levels were significantly higher. The first quartile of serum vitamin B12 levels was significantly associated with an increased risk of LAAS (aOR = 2.289, 95% CI = 1.098-4.770), SVD (aOR = 4.471, 95% CI = 1.110-4.945) and overall ischemic stroke (aOR = 3.216, 95% CI = 1.733-5.966). Similarly, the first quartile of serum folate levels was associated with an increased risk of LAAS (aOR = 3.480, 95% CI = 1.954-6.449), CEI (aOR = 2.809, 95% CI = 1.073-4.991), SVD (aOR = 5.376, 95% CI = 1.708-6.924), and overall ischemic stroke (aOR = 3.381, 95% CI = 1.535-7.449). The fourth quartile of tHcy levels was also significantly associated with an increased risk of LAAS (aOR = 2.946, 95% CI = 1.008-5.148), CEI (aOR = 2.212, 95% CI = 1.247-5.946), SVD (aOR = 2.957, 95% CI = 1.324-6.054), and overall ischemic stroke (aOR = 2.233, 95% CI = 1.586-4.592). For predicting different types of ischemic stroke, vitamin B12 alone demonstrated the best diagnostic value for SVD, evidenced by a sensitivity of 71.0% and negative predictive value of 90.3%, along with the highest positive likelihood ratio (+ LR) for SVD. Vitamin B12 + tHcy + folate are valuable in predicting different types of ischemic stroke, with the most significant effect observed in SVD, followed by LAAS, and the weakest predictive effect in CEI. Additionally, vitamin B12 alone in combination with other indicators, such as folate alone, tHcy alone, and folate + tHcy could reduce negative likelihood ratio (-LR) and improve + LR. CONCLUSIONS: Vitamin B12 was an independent risk factor for acute ischemic stroke. The risk calculation model constructed with vitamin B12 + tHcy + folate had the greatest diagnostic value for SVD.


Assuntos
Ácido Fólico , Homocisteína , AVC Isquêmico , Vitamina B 12 , Humanos , Vitamina B 12/sangue , Ácido Fólico/sangue , Homocisteína/sangue , Estudos Retrospectivos , Feminino , Masculino , Estudos de Casos e Controles , Pessoa de Meia-Idade , AVC Isquêmico/sangue , AVC Isquêmico/epidemiologia , Idoso , Fatores de Risco , Curva ROC , Acidente Vascular Cerebral/sangue
17.
J Nanobiotechnology ; 22(1): 479, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134988

RESUMO

The prevention and treatment of gastrointestinal mucosal injury caused by a plateau hypoxic environment is a clinical conundrum due to the unclear mechanism of this syndrome; however, oxidative stress and microbiota dysbiosis may be involved. The Robinia pseudoacacia L. flower, homologous to a functional food, exhibits various pharmacological effects, such as antioxidant, antibacterial, and hemostatic activities. An increasing number of studies have revealed that plant exosome-like nanoparticles (PELNs) can improve the intestinal microbiota and exert antioxidant effects. In this study, the oral administration of Robinia pseudoacacia L. flower exosome-like nanoparticles (RFELNs) significantly ameliorated hypoxia-induced gastric and small intestinal mucosal injury in mice by downregulating hypoxia-inducible factor-1α (HIF-1α) and HIF-2α expression and inhibiting hypoxia-mediated ferroptosis. In addition, oral RFELNs partially improved hypoxia-induced microbial and metabolic disorders of the stomach and small intestine. Notably, RFELNs displayed specific targeting to the gastrointestinal tract. In vitro experiments using gastric and small intestinal epithelial cell lines showed that cell death caused by elevated HIF-1α and HIF-2α under 1% O2 mainly occurred via ferroptosis. RFELNs obviously inhibited HIF-1α and HIF-2α expression and downregulated the expression of NOX4 and ALOX5, which drive reactive oxygen species production and lipid peroxidation, respectively, suppressing ferroptosis under hypoxia. In conclusion, our findings underscore the potential of oral RFELNs as novel, naturally derived agents targeting the gastrointestinal tract, providing a promising therapeutic approach for hypoxia-induced gastric and small intestinal mucosal ferroptosis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Exossomos , Ferroptose , Flores , Mucosa Gástrica , Subunidade alfa do Fator 1 Induzível por Hipóxia , Mucosa Intestinal , Intestino Delgado , Peroxidação de Lipídeos , Nanopartículas , Animais , Ferroptose/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Exossomos/metabolismo , Exossomos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Administração Oral , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Flores/química , Nanopartículas/química , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Humanos , Camundongos Endogâmicos C57BL
18.
Mar Drugs ; 22(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38535444

RESUMO

Two new sesquiterpenoid derivatives, elgonenes M (1) and N (2), and a new shikimic acid metabolite, methyl 5-O-acetyl-5-epi-shikimate (3), were isolated from the mangrove sediment-derived fungus Roussoella sp. SCSIO 41427 together with fourteen known compounds (4-17). The planar structures were elucidated through nuclear magnetic resonance (NMR) and mass spectroscopic (MS) analyses. The relative configurations of 1-3 were ascertained by NOESY experiments, while their absolute configurations were determined by electronic circular dichroism (ECD) calculation. Elgonene M (1) exhibited inhibition of interleukin-1ß (IL-1ß) mRNA, a pro-inflammatory cytokine, at a concentration of 5 µM, with an inhibitory ratio of 31.14%. On the other hand, elgonene N (2) demonstrated inhibition at a concentration of 20 µM, with inhibitory ratios of 27.57%.


Assuntos
Ascomicetos , Sesquiterpenos , Ácido Chiquímico/análogos & derivados , Dicroísmo Circular
19.
Mikrochim Acta ; 191(7): 393, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874794

RESUMO

Rutin extracted from natural plants has important medical value, so developing accurate and sensitive quantitative detection methods is one of the most important tasks. In this work, HKUST-1@GN/MoO3-Ppy NWs were utilized to develop a high-performance rutin electrochemical sensor in virtue of its high conductivity and electrocatalytic activity. The morphology, crystal structure, and chemical element composition of the fabricated sensor composites were characterized by SEM, TEM, XPS, and XRD. Electrochemical techniques including EIS, CV, and DPV were used to investigate the electrocatalytic properties of the prepared materials. The electrochemical test conditions were optimized to achieve efficient detection of rutin. The 2-electron 2-proton mechanism, consisting of several rapid and sequential phases, is postulated to occur during rutin oxidation. The results show that HKUST-1@GN/MoO3-Ppy NWs have the characteristics of large specific surface area, excellent conductivity, and outstanding electrocatalytic ability. There is a significant linear relationship between rutin concentration and the oxidation peak current of DPV. The linear range is 0.50-2000 nM, and the limit of detection is 0.27 nM (S/N = 3). In addition, the prepared electrode has been confirmed to be useful for rutin analysis in orange juice.

20.
Sensors (Basel) ; 24(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38794003

RESUMO

With the rapid development of the intelligent driving technology, achieving accurate path planning for unmanned vehicles has become increasingly crucial. However, path planning algorithms face challenges when dealing with complex and ever-changing road conditions. In this paper, aiming at improving the accuracy and robustness of the generated path, a global programming algorithm based on optimization is proposed, while maintaining the efficiency of the traditional A* algorithm. Firstly, turning penalty function and obstacle raster coefficient are integrated into the search cost function to increase the adaptability and directionality of the search path to the map. Secondly, an efficient search strategy is proposed to solve the problem that trajectories will pass through sparse obstacles while reducing spatial complexity. Thirdly, a redundant node elimination strategy based on discrete smoothing optimization effectively reduces the total length of control points and paths, and greatly reduces the difficulty of subsequent trajectory optimization. Finally, the simulation results, based on real map rasterization, highlight the advanced performance of the path planning and the comparison among the baselines and the proposed strategy showcases that the optimized A* algorithm significantly enhances the security and rationality of the planned path. Notably, it reduces the number of traversed nodes by 84%, the total turning angle by 39%, and shortens the overall path length to a certain extent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA