Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 712
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(17): e2319625121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38640343

RESUMO

Distributed nonconvex optimization underpins key functionalities of numerous distributed systems, ranging from power systems, smart buildings, cooperative robots, vehicle networks to sensor networks. Recently, it has also merged as a promising solution to handle the enormous growth in data and model sizes in deep learning. A fundamental problem in distributed nonconvex optimization is avoiding convergence to saddle points, which significantly degrade optimization accuracy. We find that the process of quantization, which is necessary for all digital communications, can be exploited to enable saddle-point avoidance. More specifically, we propose a stochastic quantization scheme and prove that it can effectively escape saddle points and ensure convergence to a second-order stationary point in distributed nonconvex optimization. With an easily adjustable quantization granularity, the approach allows a user to control the number of bits sent per iteration and, hence, to aggressively reduce the communication overhead. Numerical experimental results using distributed optimization and learning problems on benchmark datasets confirm the effectiveness of the approach.

2.
FASEB J ; 38(11): e23731, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38855909

RESUMO

Ca2+ permeation through TRPV4 in fibroblasts is associated with pathological matrix degradation. In human gingival fibroblasts, IL-1ß binding to its signaling receptor (IL-1R1) induces activation of extracellular regulated kinase (ERK) and MMP1 expression, processes that require Ca2+ flux across the plasma membrane. It is not known how IL-1R1, which does not conduct Ca2+, generates Ca2+ signals in response to IL-1. We examined whether TRPV4 mediates the Ca2+ fluxes required for ERK signaling in IL-1 stimulated gingival fibroblasts. TRPV4 was immunostained in fibroblasts of human gingival connective tissue and in focal adhesions of cultured mouse gingival fibroblasts. Human gingival fibroblasts treated with IL-1ß showed no change of TRPV4 expression but there was increased MMP1 expression. In mouse, gingival fibroblasts expressing TRPV4, IL-1 strongly increased [Ca2+]i. Pre-incubation of cells with IL-1 Receptor Antagonist blocked Ca2+ entry induced by IL-1 or the TRPV4 agonist GSK101. Knockout of TRPV4 or expression of a non-Ca2+-conducting TRPV4 pore-mutant or pre-incubation with the TRPV4 inhibitor RN1734, blocked IL-1-induced Ca2+ transients and expression of the mouse interstitial collagenase, MMP13. Treatment of mouse gingival fibroblasts with GSK101 phenocopied Ca2+ and ERK responses induced by IL-1; these responses were absent in TRPV4-null cells or cells expressing a non-conducting TRPV4 pore-mutant. Immunostained IL-1R1 localized with TRPV4 in adhesions within cell extensions. While TRPV4 immunoprecipitates analyzed by mass spectrometry showed no association with IL-1R1, TRPV4 associated with Src-related proteins and Src co-immunoprecipitated with TRPV4. Src inhibition reduced IL-1-induced Ca2+ responses. The functional linkage of TRPV4 with IL-1R1 expands its repertoire of innate immune signaling processes by mediating IL-1-driven Ca2+ responses that drive matrix remodeling in fibroblasts. Thus, inhibiting TRPV4 activity may provide a new pharmacological approach for blunting matrix degradation in inflammatory diseases.


Assuntos
Sinalização do Cálcio , Fibroblastos , Gengiva , Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Animais , Humanos , Camundongos , Fibroblastos/metabolismo , Gengiva/metabolismo , Gengiva/citologia , Cálcio/metabolismo , Sistema de Sinalização das MAP Quinases , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interleucina-1/metabolismo , Interleucina-1/farmacologia , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 1 da Matriz/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia
3.
Proc Natl Acad Sci U S A ; 119(33): e2207200119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35858375

RESUMO

The ability to produce folded and functional proteins is a necessity for structural biology and many other biological sciences. This task is particularly challenging for numerous biomedically important targets in human cells, including membrane proteins and large macromolecular assemblies, hampering mechanistic studies and drug development efforts. Here we describe a method combining CRISPR-Cas gene editing and fluorescence-activated cell sorting to rapidly tag and purify endogenous proteins in HEK cells for structural characterization. We applied this approach to study the human proteasome from HEK cells and rapidly determined cryogenic electron microscopy structures of major proteasomal complexes, including a high-resolution structure of intact human PA28αß-20S. Our structures reveal that PA28 with a subunit stoichiometry of 3α/4ß engages tightly with the 20S proteasome. Addition of a hydrophilic peptide shows that polypeptides entering through PA28 are held in the antechamber of 20S prior to degradation in the proteolytic chamber. This study provides critical insights into an important proteasome complex and demonstrates key methodologies for the tagging of proteins from endogenous sources.


Assuntos
Citometria de Fluxo , Edição de Genes , Proteínas Musculares , Complexo de Endopeptidases do Proteassoma , Sistemas CRISPR-Cas , Microscopia Crioeletrônica , Citometria de Fluxo/métodos , Edição de Genes/métodos , Células HEK293 , Humanos , Proteínas Musculares/química , Proteínas Musculares/genética , Proteínas Musculares/isolamento & purificação , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/isolamento & purificação , Proteólise
4.
BMC Plant Biol ; 24(1): 182, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475753

RESUMO

BACKGROUND: Cotton boll shedding is one of the main factors adversely affecting the cotton yield. During the cotton plant growth period, low light conditions can cause cotton bolls to fall off prematurely. In this study, we clarified the regulatory effects of low light intensity on cotton boll abscission by comprehensively analyzing the transcriptome and metabolome. RESULTS: When the fruiting branch leaves were shaded after pollination, all of the cotton bolls fell off within 5 days. Additionally, H2O2 accumulated during the formation of the abscission zone. Moreover, 10,172 differentially expressed genes (DEGs) and 81 differentially accumulated metabolites (DAMs) were identified. A KEGG pathway enrichment analysis revealed that the identified DEGs and DAMs were associated with plant hormone signal transduction and flavonoid biosynthesis pathways. The results of the transcriptome analysis suggested that the expression of ethylene (ETH) and abscisic acid (ABA) signaling-related genes was induced, which was in contrast to the decrease in the expression of most of the IAA signaling-related genes. A combined transcriptomics and metabolomics analysis revealed that flavonoids may help regulate plant organ abscission. A weighted gene co-expression network analysis detected two gene modules significantly related to abscission. The genes in these modules were mainly related to exosome, flavonoid biosynthesis, ubiquitin-mediated proteolysis, plant hormone signal transduction, photosynthesis, and cytoskeleton proteins. Furthermore, TIP1;1, UGT71C4, KMD3, TRFL6, REV, and FRA1 were identified as the hub genes in these two modules. CONCLUSIONS: In this study, we elucidated the mechanisms underlying cotton boll abscission induced by shading on the basis of comprehensive transcriptomics and metabolomics analyses of the boll abscission process. The study findings have clarified the molecular basis of cotton boll abscission under low light intensity, and suggested that H2O2, phytohormone, and flavonoid have the potential to affect the shedding process of cotton bolls under low light stress.


Assuntos
Reguladores de Crescimento de Plantas , Transcriptoma , Gossypium/genética , Peróxido de Hidrogênio/metabolismo , Perfilação da Expressão Gênica/métodos , Metaboloma , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas
5.
J Virol ; 97(7): e0066423, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37358466

RESUMO

Nuclear receptors are ligand-activated transcription factors that play an important role in regulating innate antiviral immunity and other biological processes. However, the role of nuclear receptors in the host response to infectious bursal disease virus (IBDV) infection remains elusive. In this study, we show that IBDV infection or poly(I·C) treatment of DF-1 or HD11 cells markedly decreased nuclear receptor subfamily 2 group F member 2 (NR2F2) expression. Surprisingly, knockdown, knockout, or inhibition of NR2F2 expression in host cells remarkably inhibited IBDV replication and promoted IBDV/poly(I·C)-induced type I interferon and interferon-stimulated genes expression. Furthermore, our data show that NR2F2 negatively regulates the antiviral innate immune response by promoting the suppressor of cytokine signaling 5 (SOCS5) expression. Thus, reduced NR2F2 expression in the host response to IBDV infection inhibited viral replication by enhancing the expression of type I interferon by targeting SOCS5. These findings reveal that NR2F2 plays a crucial role in antiviral innate immunity, furthering our understanding of the mechanism underlying the host response to viral infection. IMPORTANCE Infectious bursal disease (IBD) is an immunosuppressive disease causing considerable economic losses to the poultry industry worldwide. Nuclear receptors play an important role in regulating innate antiviral immunity. However, the role of nuclear receptors in the host response to IBD virus (IBDV) infection remains elusive. Here, we report that NR2F2 expression decreased in IBDV-infected cells, which consequently reduced SOCS5 expression, promoted type I interferon expression, and suppressed IBDV infection. Thus, NR2F2 serves as a negative factor in the host response to IBDV infection by regulating SOCS5 expression, and intervention in the NR2F2-mediated host response by specific inhibitors might be employed as a strategy for prevention and treatment of IBD.


Assuntos
Infecções por Birnaviridae , Vírus da Doença Infecciosa da Bursa , Interferon Tipo I , MicroRNAs , Doenças das Aves Domésticas , Animais , Interferon Tipo I/metabolismo , Vírus da Doença Infecciosa da Bursa/fisiologia , Galinhas , Linhagem Celular , MicroRNAs/genética , Interações Hospedeiro-Patógeno/genética , Antivirais , Replicação Viral
6.
J Virol ; 97(6): e0028423, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37255472

RESUMO

Hepatitis-pericardial syndrome (HHS) is an acute highly infectious avian disease caused by fowl adenovirus serotype 4 (FAdV-4), characterized by fulminant hepatitis and hydropericardium in broilers. Since 2015, a widespread epidemic has occurred in China due to the emergence of hypervirulent FAdV-4 (HPFAdV-4), causing huge losses to the stakeholders. However, the pathogenesis of HPFAdV-4 and the host responses to its infection remain elusive. Here, we show that infection of leghorn male hepatocellular (LMH) cells by HPFAdV-4 induced complete autophagy in cells and that the autophagy induced by recombinant HPFAdV-4-ON1 (rHPFAdV-4-ON1), a viral strain generated by replacing the hexon gene of wild-type HPFAdV-4 (HPFAdV-4-WT) with the one of nonpathogenic strain FAdV-4-ON1, was remarkably mitigated compared to that of the rHPFAdV-4-WT control, suggesting that HPFAdV-4 hexon is responsible for virus-induced autophagy. Importantly, we found that hexon interacted with a cellular protein, BAG3, a host protein that initiates autophagy, and that BAG3 expression increased in cells infected with HPFAdV-4. Furthermore, knockdown of BAG3 by RNA interference (RNAi) significantly inhibited HPFAdV-4- or hexon-induced autophagy and suppressed viral replication. On the contrary, expression of hexon markedly upregulated the expression of BAG3 via activating the P38 signaling pathway, triggering autophagy. Thus, these findings reveal that HPFAdV-4 hexon interacts with the host protein BAG3 and promotes BAG3 expression by activating P38 signaling pathway, thereby inducing autophagy and enhancing viral proliferation, which immensely furthers our understanding of the pathogenesis of HPFAdV-4 infection. IMPORTANCE HHS, mainly caused by HPFAdV-4, has caused large economic losses to the stakeholders in recent years. Infection of leghorn male hepatocellular (LMH) cells by HPFAdV-4 induced complete autophagy that is essential for HPFAdV-4 replication. By a screening strategy, the viral protein hexon was found responsible for virus-induced autophagy in cells. Importantly, hexon was identified as a factor promoting viral replication by interaction with BAG3, an initiator of host cell autophagy. These findings will help us to better understand the host response to HPFAdV-4 infection, providing a novel insight into the pathogenesis of HPFAdV-4 infection.


Assuntos
Infecções por Adenoviridae , Autofagia , Proteínas do Capsídeo , Doenças das Aves Domésticas , Replicação Viral , Animais , Masculino , Adenoviridae/genética , Adenoviridae/fisiologia , Infecções por Adenoviridae/veterinária , Galinhas , Doenças das Aves Domésticas/virologia , Sorogrupo
7.
IUBMB Life ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822621

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that can actively participate in post-transcriptional regulation of genes. A number of studies have shown that miRNAs can serve as important regulators of cancer cell growth, differentiation, and apoptosis. They can also act as markers for the diagnosis and prognosis of certain cancers. To explore the potential prognosis-related miRNAs in liver cancer patients, to provide theoretical basis for early diagnosis and prognosis of liver cancer, as well as to provide a new direction for the targeted therapy of liver cancer. The miRNA expression profiles of liver cancer patients in the the Cancer Genome Atlas database were comprehensively analyzed and various prognostic-related miRNAs of liver cancer were screened out. The data was further subjected to survival analysis, prognostic analysis, gene ontology and kyoto encyclopedia of genes and genomes enrichment analysis, microenvironment analysis, and drug sensitivity analysis by R Language version 4.2.0. Finally, the screened miRNAs were further validated by different experiments. Thus, miNRAs involved in liver cancer diagnosis and prognosis were identified. MiRNA-3680-3p was found to be significantly different in 10 different cancers, including liver cancer, and was significantly associated with the microenvironment, survival, and prognosis of liver cancer patients. In addition, drug sensitivity analysis revealed that miRNA-3680-3p can provide a useful reference for drug selection in targeted therapy for liver cancer. MiRNA-3680-3p can serve as a biomarker for the diagnosis and prognosis of liver cancer patients and down-regulation of miRNA-3680-3p could significantly inhibit both the proliferation and migration of liver cancer cells.

8.
Hepatology ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051951

RESUMO

BACKGROUND AND AIMS: Cross talk between tumor cells and immune cells enables tumor cells to escape immune surveillance and dictate responses to immunotherapy. Previous studies have identified that downregulation of the glycolytic enzyme fructose-1,6-bisphosphate aldolase B (ALDOB) in tumor cells orchestrated metabolic programming to favor HCC. However, it remains elusive whether and how ALDOB expression in tumor cells affects the tumor microenvironment in HCC. APPROACH AND RESULTS: We found that ALDOB downregulation was negatively correlated with CD8 + T cell infiltration in human HCC tumor tissues but in a state of exhaustion. Similar observations were made in mice with liver-specific ALDOB knockout or in subcutaneous tumor models with ALDOB knockdown. Moreover, ALDOB deficiency in tumor cells upregulates TGF-ß expression, thereby increasing the number of Treg cells and impairing the activity of CD8 + T cells. Consistently, a combination of low ALDOB and high TGF-ß expression exhibited the worst overall survival for patients with HCC. More importantly, the simultaneous blocking of TGF-ß and programmed cell death (PD) 1 with antibodies additively inhibited tumorigenesis induced by ALDOB deficiency in mice. Further mechanistic experiments demonstrated that ALDOB enters the nucleus and interacts with lysine acetyltransferase 2A, leading to inhibition of H3K9 acetylation and thereby suppressing TGFB1 transcription. Consistently, inhibition of lysine acetyltransferase 2A activity by small molecule inhibitors suppressed TGF-ß and HCC. CONCLUSIONS: Our study has revealed a novel mechanism by which a metabolic enzyme in tumor cells epigenetically modulates TGF-ß signaling, thereby enabling cancer cells to evade immune surveillance and affect their response to immunotherapy.

9.
Opt Express ; 32(10): 17942-17952, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858962

RESUMO

The interaction between the intrinsic polarity of the host material and the TADF guest material affects charge injection and transport, exciton formation, charge recombination, and emission mechanisms. Therefore, understanding and controlling the interaction between the intrinsic polarity of the host material and the TADF guest material is very important to realize efficient TADF-OLED devices. This study investigated the molecular interaction between different polar host materials and a thermally activated delayed fluorescence material (DMAc-PPM). It has been found that interaction between the host and guest (π-π stacking interaction, multiple CH/π contacts) greatly influence the molecular transition dipole moment orientation of the guest. And the OLED devices based on the strong polar host (DPEPO) exhibited the highest EQEmax and lowest luminescence intensity, while devices using the weaker polar hosts mCP and CBP achieved higher luminance and lower EQEmax. Then, the strong polar host DPEPO was mixed with the weaker polar hosts CBP and mCP, respectively. The devices prepared based on the mixed-host DPEPO: mCP showed a 2.2 times improvement in EQEmax from 6.3% to 20.1% compared to the single-host mCP. The devices prepared based on the mixed-host DPEPO: CBP showed a 3.1 times improvement in luminance intensity from 1023 cd/m2 to 4236 cd/m2 compared to the single host of DPEPO. This suggests that optimizing the polarity of host materials has the potential to enhance the performance of solution prepared OLED devices.

10.
Microb Pathog ; 190: 106628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508422

RESUMO

Rotavirus infections in suckling and weaning piglets cause severe dehydration and death, resulting in significant economic losses in the pig breeding industry. With the continuous emergence of porcine rotavirus (PoRV) variants and poor vaccine cross-protection among various genotypes, there is an urgent need to develop alternative strategies such as seeking effective antiviral products from nature, microbial metabolites and virus-host protein interaction. Sialidases play a crucial role in various physiopathological processes and offer a promising target for developing antivirus drugs. However, the effect of bacterial-derived sialidases on the infection of PoRVs remains largely unknown. Herein, we investigated the impact of bacterial-derived sialidases (sialidase Cp and Vc) on PoRV strain OSU(Group A) infection, using differentiated epithelial monkey kidney cells (MA104) as a model. Our results indicated that the pretreatment of MA104 with exogenous sialidases effectively suppressed PoRV OSU in a concentration-dependent manner. Notably, even at a concentration of 0.01 µU/mL, sialidases significantly inhibited the virus (MOI = 0.01). Meanwhile, we found that sialidase Vc pretreatment sharply reduced the binding rate of PoRV OSU. Last, we demonstrated that PoRV OSU might recognize α-2,3-linked sialic acid as the primary attachment factor in MA104. Our findings provide new insights into the underlying mechanism of PoRV OSU infections, shedding lights on the development of alternative antivirus approaches based on bacteria-virus interaction.


Assuntos
Neuraminidase , Infecções por Rotavirus , Rotavirus , Replicação Viral , Animais , Neuraminidase/metabolismo , Neuraminidase/genética , Rotavirus/efeitos dos fármacos , Rotavirus/fisiologia , Suínos , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/virologia , Células Epiteliais/microbiologia , Ligação Viral/efeitos dos fármacos , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/farmacologia , Antivirais/farmacologia , Haplorrinos , Doenças dos Suínos/virologia , Doenças dos Suínos/microbiologia
11.
FASEB J ; 37(6): e22946, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37219464

RESUMO

Transient Receptor Potential Vanilloid-type 4 (TRPV4) is a mechanosensitive, Ca2+ -permeable plasma membrane channel that associates with focal adhesions, influences collagen remodeling, and is associated with fibrotic processes through undefined mechanisms. While TRPV4 is known to be activated by mechanical forces transmitted through collagen adhesion receptors containing the ß1 integrin, it is not understood whether TRPV4 affects matrix remodeling by altering ß1 integrin expression and function. We tested the hypothesis that TRPV4 regulates collagen remodeling through its impact on the ß1 integrin in cell-matrix adhesions. In cultured fibroblasts derived from mouse gingival connective tissues, which exhibit very rapid collagen turnover, we found that higher TRPV4 expression is associated with reduced ß1 integrin abundance and adhesion to collagen, reduced focal adhesion size and total adhesion area, and reduced alignment and compaction of extracellular fibrillar collagen. The reduction of ß1 integrin expression mediated by TRPV4 is associated with the upregulation of miRNAs that target ß1 integrin mRNA. Our data suggest a novel mechanism by which TRPV4 modulates collagen remodeling through post-transcriptional downregulation of ß1 integrin expression and function.


Assuntos
Integrina beta1 , Canais de Cátion TRPV , Animais , Camundongos , Junções Célula-Matriz , Colágeno , Adesões Focais
12.
Neurochem Res ; 49(5): 1268-1277, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38337134

RESUMO

Electroacupuncture (EA) effectively improves arthritis-induced hyperalgesia and allodynia by repressing spinal microglial activation, which plays a crucial role in pain hypersensitivity following tissue inflammation. However, the mechanism by which EA suppresses spinal microglial activation in monoarthritis (MA) remains unclear. In the present study, a rat model of MA was established through unilateral ankle intra-articular injection of complete Freund's adjuvant (CFA). The relationship among P2Y12 receptor (P2Y12R) expression, spinal microglial activation, and EA analgesia was investigated using quantitative real-time PCR (qRT‒PCR), western blotting, immunofluorescence (IF), and behavioral testing. The results found that EA treatment at the ipsilateral "Huantiao" (GB30) and "Yanglingquan" (GB34) acupoints markedly attenuated pain and spinal microglia M1 polarization in MA rats. In particular, P2Y12R expression was significantly increased at the mRNA and protein levels in the spinal dorsal horn in MA rats, whereas EA treatment effectively repressed the MA-induced upregulation of P2Y12R. IF analysis further revealed that most P2Y12R was expressed in microglia in the spinal dorsal horn. Pharmacological inhibition of P2Y12R by its antagonist (AR-C69931MX) decreased MA-induced spinal microglial activation and subsequent proinflammatory cytokine production. Consequently, AR-C69931MX significantly intensified the anti-pain hypersensitive function of EA in MA rats. Taken together, these results demonstrate that EA alleviates MA-induced pain by suppressing P2Y12R-dependent microglial activation.


Assuntos
Artrite , Eletroacupuntura , Ratos , Animais , Microglia/metabolismo , Ratos Sprague-Dawley , Eletroacupuntura/métodos , Medula Espinal/metabolismo , Dor/induzido quimicamente , Dor/metabolismo , Hiperalgesia/terapia , Hiperalgesia/tratamento farmacológico , Artrite/metabolismo , Artrite/terapia
13.
Langmuir ; 40(5): 2773-2780, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38275660

RESUMO

As an advanced water purification technology, magnetic nanoabsorbents are highly attractive for their sustainability, robustness, and energy efficiency. However, magnetic responsiveness and high adsorptive capacity are irreconcilable during the design and synthesis of a high-performance magnetic nanoabsorbent. Here, we address this issue by designing a kind of mesoporous magnetic polymer hybrid microspheres, where functional polymers such as polyrhodanine and polypyrrole were attached to the pore walls in the interior of mesoporous Fe3O4 microspheres through in situ polymerization. Due to the integrated large saturation magnetic moment, porous structure, and dense polymer layer, the mesoporous magnetic polymer hybrid microspheres demonstrated fast magnetic responsiveness, excellent recycling performance, and high adsorption capacities toward Pb(II) ions (189 mg g-1) for polyrhodanine and Cr(VI) ions (199 mg g-1) for polypyrrole. Furthermore, their potential application in wastewater treatment was verified by a self-made magnetic separation column, where the designed magnetic nanoabsorbent exhibits significant advantages including rapid separation of heavy metal ions and high outflow. This study provided a promising magnetic polymer hybrid nanoabsorbent for realizing efficient removal of heavy metal ions from wastewater.

14.
Eur Spine J ; 33(1): 176-184, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37659971

RESUMO

PURPOSE: To present the clinical features and treatment strategy of degenerative atlantoaxial subluxation (DAAS). METHODS: Patients with DAAS treated in our institution from 2003 to 2020 were retrospectively reviewed. We utilized the Japanese Orthopedic Association (JOA) scale to evaluate the neurologic status and distance of Ranawat et al. (DOR) to measure vertical migration. RESULTS: We recruited 40 patients with > 2 years of follow-up and an average age of 62.3 ± 7.7 years. All the patients had myelopathy; only one patient had moderate trauma before exacerbation of symptoms, and the duration of symptoms was 34 ± 36 months. The most frequent radiological features were vertical migration of C1 (100%), sclerosis (100%), and narrowing of the atlantoaxial lateral mass articulations (100%). Two patients underwent transoral release combined with posterior reduction and fusion, and 38 patients underwent posterior reduction and fusion with C1 lateral mass screws-C2 pedicle screws and plate systems only. Forty cases (100%) achieved a solid atlantoaxial fusion, and 38 cases (95%) achieved anatomic atlantoaxial reduction. The JOA score increased from 9.3 ± 2.6 to 14.8 ± 2.1 (P < 0.01). DOR increased from 14.5 ± 2.5 to 17.8 ± 2.2 mm at the final follow-up (P < 0.01). Loosening of the locking caps was detected in one case, bony fusion was achieved, and harvest-site pain was reported in five patients. CONCLUSION: DAAS differs from other types of AAS and presents with anterior subluxation combined with vertical subluxation arising from degenerative changes in the atlantoaxial joints. We recommend anatomic reduction as an optimal strategy for DAAS.


Assuntos
Articulação Atlantoaxial , Doenças da Medula Óssea , Luxações Articulares , Lesões do Pescoço , Parafusos Pediculares , Doenças da Medula Espinal , Fusão Vertebral , Humanos , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Luxações Articulares/complicações , Luxações Articulares/diagnóstico por imagem , Luxações Articulares/cirurgia , Placas Ósseas , Articulação Atlantoaxial/diagnóstico por imagem , Articulação Atlantoaxial/cirurgia , Fusão Vertebral/métodos , Resultado do Tratamento
15.
Eur Spine J ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858266

RESUMO

BACKGROUND: Osteoporotic vertebral compression fractures (OVCF) caused by osteoporosis is a common clinical fracture type. There are many surgical treatment options for OVCF, but there is a lack of comparison among different options. Therefore, we counted a total of 104 cases of OVCF operations with different surgical plans, followed up the patients, and compared the surgical outcome indications before, after and during the follow-up. METHOD: 104 patients who underwent posterior osteotomy (Modified PSO, SPO, PSO, VCR) and kyphosis correction surgery at our hospital between April 2006 and August 2021 with a minimum follow-up period of 24 months were included. All cases were injuries induced by a fall incurred while standing or lifting heavy objects without high-energy trauma. The mean CT value was 71 HU, which was below 110 HU, indicating severe osteoporosis. The indications for surgery included gait disturbance due to severe pain with pseudarthrosis, increased kyphotic angle, and progressive neurological symptoms. Pre- and postoperative CL, TLK, TK, PrTK, TKmax, GK, LL, PI, SS, PT, SVA, TPA, were investigated radiologically. Additionally, We evaluated estimated blood loss, surgical time and perioperative symptom. RESULT: The results show, after operation, TLK (37.32 ± 10.61° vs. 11.01 ± 8.06°, P < 0.001), TK (35.42 ± 17.64° vs. 25.62 ± 12.24°, P < 0.001), TKmax (49.71 ± 16.32° vs. 24.12 ± 13.34°, P < 0.001), SVA (44.91 ± 48.67 vs. 23.52 ± 30.21, P = 0.013), CL (20.23 ± 13.21° vs. 11.45 ± 9.85°, P = 0.024) and TPA (27.44 ± 12.76° vs. 13.91 ± 9.24°, P = 0.009) were improved significantly in modified Pedicle subtraction osteotomy (mPSO) after operation. During follow-up, TLK (37.32 ± 10.61° vs. 13.88 ± 10.02°, P < 0.001) and TKmax (49.71 ± 16.32° vs. 24.12 ± 13.34°, P < 0.001) were improved significantly in Modified PSO group. In additon, estimated blood loss (790.0 ± 552.2 ml vs. 987.0 ± 638.5 ml, P = 0.038), time of operation (244.1 ± 63.0 min vs. 292.4 ± 87.6 min, P = 0.025) were favorable in Modified PSO group compared to control group. CONCLUSION: To conclude, mPSO could acquire a favorable degree of kyphosis correction as well as fewer follow-up complications. Compared with other surgical methods, it also has the advantages of less surgical trauma and shorter operation time. It can be an effective solution for the treatment of OVCF.

16.
Nano Lett ; 23(9): 3754-3761, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37094221

RESUMO

Defect engineering of van der Waals semiconductors has been demonstrated as an effective approach to manipulate the structural and functional characteristics toward dynamic device controls, yet correlations between physical properties with defect evolution remain underexplored. Using proton irradiation, we observe an enhanced exciton-to-trion conversion of the atomically thin WS2. The altered excitonic states are closely correlated with nanopore induced atomic displacement, W nanoclusters, and zigzag edge terminations, verified by scanning transmission electron microscopy, photoluminescence, and Raman spectroscopy. Density functional theory calculation suggests that nanopores facilitate formation of in-gap states that act as sinks for free electrons to couple with excitons. The ion energy loss simulation predicts a dominating electron ionization effect upon proton irradiation, providing further evidence on band perturbations and nanopore formation without destroying the overall crystallinity. This study provides a route in tuning the excitonic properties of van der Waals semiconductors using an irradiation-based defect engineering approach.

17.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474071

RESUMO

Mycoplasma gallisepticum is one of the smallest self-replicating organisms. It causes chronic respiratory disease, leading to significant economic losses in poultry industry. Following M. gallisepticum invasion, the pathogen can persist in the host owing to its immune evasion, resulting in long-term chronic infection. The strategies of immune evasion by mycoplasmas are very complex and recent research has unraveled these sophisticated mechanisms. The antigens of M. gallisepticum exhibit high-frequency changes in size and expression cycle, allowing them to evade the activation of the host humoral immune response. M. gallisepticum can invade non-phagocytic chicken cells and also regulate microRNAs to modulate cell proliferation, inflammation, and apoptosis in tracheal epithelial cells during the disease process. M. gallisepticum has been shown to transiently activate the inflammatory response and then inhibit it by suppressing key inflammatory mediators, avoiding being cleared. The regulation and activation of immune cells are important for host response against mycoplasma infection. However, M. gallisepticum has been shown to interfere with the functions of macrophages and lymphocytes, compromising their defense capabilities. In addition, the pathogen can cause immunological damage to organs by inducing an inflammatory response, cell apoptosis, and oxidative stress, leading to immunosuppression in the host. This review comprehensively summarizes these evasion tactics employed by M. gallisepticum, providing valuable insights into better prevention and control of mycoplasma infection.


Assuntos
Infecções por Mycoplasma , Mycoplasma gallisepticum , Doenças das Aves Domésticas , Animais , Evasão da Resposta Imune , Galinhas , Aves Domésticas
18.
J Virol ; 96(14): e0075922, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35867570

RESUMO

Avian reovirus (ARV) causes viral arthritis, chronic respiratory diseases, retarded growth, and malabsorption syndrome. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally by silencing or degrading their targets, thus playing important roles in the host response to pathogenic infection. However, the role of miRNAs in host response to ARV infection is still not clear. In this study, we show that ARV infection markedly increased gga-miR-30c-5p expression in DF-1 cells and that transfection of cells with gga-miR-30c-5p inhibited ARV replication while knockdown of endogenous gga-miR-30c-5p enhanced viral growth in cells. Importantly, we identified the autophagy related 5 (ATG5), an important proautophagic protein, as a bona fide target of gga-miR-30c-5p. Transfection of DF-1 cells with gga-miR-30c-5p markedly reduced ATG5 expression accompanied with reduced conversion of ARV-induced-microtubule-associated protein 1 light chain 3 II (LC3-II) from LC3-I, an indicator of autophagy in host cell, while knockdown of endogenous gga-miR-30c-5p enhanced ATG5 expression as well as ARV-induced conversion of LC3-II, facilitating viral growth in cells. Furthermore, knockdown of ATG5 by RNA interference (RNAi) or treatment of cells with autophagy inhibitors (3-MA and wortmannin) markedly reduced ARV-induced LC3-II and syncytium formation, suppressing viral growth in cells, while overexpression of ATG5 increased ARV-induced LC3-II and syncytium formation, promoting viral growth in cells. Thus, gga-miR-30c-5p suppressed viral replication by inhibition of ARV-induced autophagy via targeting ATG5. These findings unraveled the mechanism of how host cells combat against ARV infection by self-encoded small RNA and furthered our understanding of the role of microRNAs in host response to pathogenic infection. IMPORTANCE Avian reovirus (ARV) is an important poultry pathogen causing viral arthritis, chronic respiratory diseases, and retarded growth, leading to considerable economic losses to the poultry industry across the globe. Elucidation of the pathogenesis of ARV infection is crucial to guiding the development of novel vaccines or drugs for the effective control of these diseases. Here, we investigated the role of miRNAs in host response to ARV infection. We found that infection of host cells by ARV remarkably upregulated gga-miR-30c-5p expression. Importantly, gga-miR-30c-5p suppressed ARV replication by inhibition of ARV-induced autophagy via targeting autophagy related 5 (ATG5) accompanied by suppression of virus-induced syncytium formation, thus serving as an important antivirus factor in host response against ARV infection. These findings will further our understanding of how host cells combat against ARV infection by self-encoded small RNAs and may be used as a potential target for intervening ARV infection.


Assuntos
Proteína 5 Relacionada à Autofagia , MicroRNAs , Orthoreovirus Aviário , Infecções por Reoviridae , Animais , Autofagia , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Galinhas/genética , MicroRNAs/genética , Orthoreovirus Aviário/patogenicidade , Orthoreovirus Aviário/fisiologia , Infecções por Reoviridae/prevenção & controle , Replicação Viral
19.
J Virol ; 96(7): e0188821, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35319228

RESUMO

Recognition of viral RNAs by melanoma differentiation associated gene-5 (MDA5) initiates chicken antiviral response by producing type I interferons. Our previous studies showed that chicken microRNA-155-5p (gga-miR-155-5p) enhanced IFN-ß expression and suppressed the replication of infectious burse disease virus (IBDV), a double-stranded RNA (dsRNA) virus causing infectious burse disease in chickens. However, the mechanism underlying IBDV-induced gga-miR-155-5p expression in host cells remains elusive. Here, we show that IBDV infection or poly(I:C) treatment of DF-1 cells markedly increased the expression of GATA-binding protein 3 (GATA3), a master regulator for TH2 cell differentiation, and that GATA3 promoted gga-miR-155-5p expression in IBDV-infected or poly(I:C)-treated cells by directly binding to its promoter. Surprisingly, ectopic expression of GATA3 significantly reduced IBDV replication in DF-1 cells, and this reduction could be completely abolished by treatment with gga-miR-155-5p inhibitors, whereas knockdown of GATA3 by RNA interference enhanced IBDV growth, and this enhancement could be blocked with gga-miR-155-5p mimics, indicating that GATA3 suppressed IBDV replication by gga-miR-155-5p. Furthermore, our data show that MDA5 is required for GATA3 expression in host cells with poly(I:C) treatment, so are the adaptor protein TBK1 and transcription factor IRF7, suggesting that induction of GATA3 expression in IBDV-infected cells relies on MDA5-TBK1-IRF7 signaling pathway. These results uncover a novel role for GATA3 as an antivirus transcription factor in innate immune response by promoting miR-155 expression, further our understandings of host response against pathogenic infection, and provide valuable clues to the development of antiviral reagents for public health. IMPORTANCE Gga-miR-155-5p acts as an important antivirus factor against IBDV infection, which causes a severe immunosuppressive disease in chicken. Elucidation of the mechanism regulating gga-miR-155-5p expression in IBDV-infected cells is essential to our understandings of the host response against pathogenic infection. This study shows that transcription factor GATA3 initiated gga-miR-155-5p expression in IBDV-infected cells by directly binding to its promoter, suppressing viral replication. Furthermore, induction of GATA3 expression was attributable to the recognition of dsRNA by MDA5, which initiates signal transduction via TBK1 and IRF7. Thus, it is clear that IBDV induces GATA3 expression via MDA5-TBK1-IRF7 signaling pathway, thereby suppressing IBDV replication by GATA3-mediated gga-miR-155-5p expression. This information remarkably expands our knowledge of the roles for GATA3 as an antivirus transcription factor in host innate immune response particularly at an RNA level and may prove valuable in the development of antiviral drugs for public health.


Assuntos
Infecções por Birnaviridae , Fator de Transcrição GATA3 , Vírus da Doença Infecciosa da Bursa , MicroRNAs , Animais , Antivirais , Infecções por Birnaviridae/tratamento farmacológico , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/virologia , Linhagem Celular , Galinhas , Fator de Transcrição GATA3/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Vírus da Doença Infecciosa da Bursa/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Poli I-C/farmacologia , Replicação Viral/fisiologia
20.
J Virol ; 96(6): e0011322, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107370

RESUMO

Infectious bursal disease virus (IBDV), which targets bursa B lymphocytes, causes severe immunosuppressive disease in chickens, inducing huge economic losses for the poultry industry. To date, the functional receptor for IBDV binding and entry into host cells remains unclear. This study used mass spectrometry to screen host proteins of chicken bursal lymphocytes interacting with VP2. The chicken transmembrane protein cluster of differentiation 44 (chCD44) was identified and evaluated for its interaction with IBDV VP2, the major capsid protein. Overexpression and knockdown experiments showed that chCD44 promotes replication of IBDV. Furthermore, soluble chCD44 and the anti-chCD44 antibody blocked virus binding. The results of receptor reconstitution indicated that chCD44 overexpression conferred viral binding capability in nonpermissive cells. More important, although we found that IBDV could not replicate in the chCD44-overexpressed nonpermissive cells, the virus could enter nonpermissive cells using chCD44. Our finding reveals that chCD44 is a cellular receptor for IBDV, facilitating virus binding and entry in target cells by interacting with the IBDV VP2 protein. IMPORTANCE Infectious bursal disease virus (IBDV) causes severe immunosuppressive disease in chickens, inducing huge economic losses for the poultry industry. However, the specific mechanism of IBDV invading host cells of IBDV was not very clear. This study shed light on which cellular protein component IBDV is used to bind and/or enter B lymphocytes. The results of our study revealed that chCD44 could promote both the binding and entry ability of IBDV in B lymphocytes, acting as a cellular receptor for IBDV. Besides, this is the first report about chicken CD44 function in viral replication. Our study impacts the understanding of the IBDV binding and entry process and sets the stage for further elucidation of the infection mechanism of IBDV.


Assuntos
Infecções por Birnaviridae , Receptores de Hialuronatos , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Animais , Linfócitos B/metabolismo , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/virologia , Galinhas , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Vírus da Doença Infecciosa da Bursa/fisiologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Receptores de Antígenos de Linfócitos B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA