Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cancer Sci ; 112(6): 2272-2286, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33113263

RESUMO

Single-nucleotide polymorphisms (SNP) and long non-coding RNAs (lncRNAs) have been involved in the process of lung cancer. Following clues given by lung cancer risk-associated SNP, we aimed to find novel functional lncRNAs as candidate targets in lung cancer. We identified a lncRNA Oxidative Stress Responsive Serine Rich 1 Antisense RNA 1 (OSER1-AS1) through a lung cancer risk-associated SNP rs4142441. OSER1-AS1 was down-regulated in tumor tissue and its low expression was significantly associated with poor overall survival among non-smokers in non-small cell lung cancer (NSCLC) patients. Gain- and loss-of-function studies showed that OSER1-AS1 acted as a tumor suppressor by inhibiting lung cancer cell growth, migration and invasion in vitro. Xenograft tumor assays and a metastasis mouse model confirmed that OSER1-AS1 suppressed tumor growth and metastasis in vivo. The promoter of OSER1-AS1 was repressed by MYC, and the 3'-end of OSER1-AS1 was competitively targeted by microRNA hsa-miR-17-5p and RNA-binding protein ELAVL1. Our results indicated that OSER1-AS1 exerted tumor-suppressive functions by acting as an ELAVL1 decoy to keep it away from its target mRNAs. Our findings characterized OSER1-AS1 as a new tumor-suppressive lncRNA in NSCLC, suggesting that OSER1-AS1 may be suitable as a potential biomarker for prognosis, and a potential target for treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proteína Semelhante a ELAV 1/metabolismo , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , MicroRNAs/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Polimorfismo de Nucleotídeo Único , Prognóstico , Regiões Promotoras Genéticas , Ligação Proteica , RNA Longo não Codificante/metabolismo
2.
BMC Infect Dis ; 21(1): 1012, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579666

RESUMO

BACKGROUND: The receptor of severe respiratory syndrome coronavirus 2 (SARS-CoV-2), angiotensin-converting enzyme 2, is more abundant in kidney than in lung tissue, suggesting that kidney might be another important target organ for SARS-CoV-2. However, our understanding of kidney injury caused by Coronavirus Disease 2019 (COVID-19) is limited. This study aimed to explore the association between kidney injury and disease progression in patients with COVID-19. METHODS: A retrospective cohort study was designed by including 2630 patients with confirmed COVID-19 from Huoshenshan Hospital (Wuhan, China) from 1 February to 13 April 2020. Kidney function indexes and other clinical information were extracted from the electronic medical record system. Associations between kidney function indexes and disease progression were analyzed using Cox proportional-hazards regression and generalized linear mixed model. RESULTS: We found that estimated glomerular filtration rate (eGFR) and creatinine clearance (Ccr) decreased in 22.0% and 24.0% of patients with COVID-19, respectively. Proteinuria was detected in 15.0% patients and hematuria was detected in 8.1% of patients. Hematuria (HR 2.38, 95% CI 1.50-3.78), proteinuria (HR 2.16, 95% CI 1.33-3.51), elevated baseline serum creatinine (HR 2.84, 95% CI 1.92-4.21) and blood urea nitrogen (HR 3.54, 95% CI 2.36-5.31), and decrease baseline eGFR (HR 1.58, 95% CI 1.07-2.34) were found to be independent risk factors for disease progression after adjusted confounders. Generalized linear mixed model analysis showed that the dynamic trajectories of uric acid was significantly related to disease progression. CONCLUSION: There was a high proportion of early kidney function injury in COVID-19 patients on admission. Early kidney injury could help clinicians to identify patients with poor prognosis at an early stage.


Assuntos
Injúria Renal Aguda , COVID-19 , Estudos de Coortes , Progressão da Doença , Humanos , Rim , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2
3.
Front Neurosci ; 16: 935827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267238

RESUMO

Objective: Stroke patients often suffer from hand dysfunction or loss of tactile perception, which in turn interferes with hand rehabilitation. Tactile-enhanced multi-sensory feedback rehabilitation is an approach worth considering, but its effectiveness has not been well studied. By using functional near-infrared spectroscopy (fNIRS) to analyze the causal activity patterns in the sensorimotor cortex, the present study aims to investigate the cortical hemodynamic effects of hand rehabilitation training when tactile stimulation is applied, and to provide a basis for rehabilitation program development. Methods: A vibrotactile enhanced pneumatically actuated hand rehabilitation device was tested on the less-preferred hand of 14 healthy right-handed subjects. The training tasks consisted of move hand and observe video (MO), move hand and vibration stimulation (MV), move hand, observe video, and vibration stimulation (MOV), and a contrast resting task. Region of interest (ROI), a laterality index (LI), and causal brain network analysis methods were used to explore the brain's cortical blood flow response to a multi-sensory feedback rehabilitation task from multiple perspectives. Results: (1) A more pronounced contralateral activation in the right-brain region occurred under the MOV stimulation. Rehabilitation tasks containing vibrotactile enhancement (MV and MOV) had significantly more oxyhemoglobin than the MO task at 5 s after the task starts, indicating faster contralateral activation in sensorimotor brain regions. (2) Five significant lateralized channel connections were generated under the MV and MOV tasks (p < 0.05), one significant lateralized channel connection was generated by the MO task, and the Rest were not, showing that MV and MOV caused stronger lateralization activation. (3) We investigated all thresholds of granger causality (GC) resulting in consistent relative numbers of effect connections. MV elicited stronger causal interactions between the left and right cerebral hemispheres, and at the GC threshold of 0.4, there were 13 causal network connection pairs for MV, 7 for MO, and 9 for MOV. Conclusion: Vibrotactile cutaneous stimulation as a tactile enhancement can produce a stronger stimulation of the brain's sensorimotor brain areas, promoting the establishment of neural pathways, and causing a richer effect between the left and right cerebral hemispheres. The combination of kinesthetic, vibrotactile, and visual stimulation can achieve a more prominent training efficiency from the perspective of functional cerebral hemodynamics.

4.
Front Aging Neurosci ; 14: 879006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431889

RESUMO

Background: The vigilance fluctuation and decrement of sustained attention have large detrimental consequences to most tasks in daily life, especially among the elderly. Non-invasive brain stimulations (e.g., transcranial direct current stimulation, tDCS) have been widely applied to improve sustained attention, however, with mixed results. Objective: An infraslow frequency oscillatory tDCS approach was designed to improve sustained attention. Methods: The infraslow frequency oscillatory tDCS (O-tDCS) over the left dorsolateral prefrontal cortex at 0.05 Hz was designed and compared with conventional tDCS (C-tDCS) to test whether this new protocol improves sustained attention more effectively. The sustained attention was evaluated by reaction time and accuracy. Results: Compared with the C-tDCS and sham, the O-tDCS significantly enhanced sustained attention by increasing response accuracy, reducing response time, and its variability. These effects were predicted by the evoked oscillation of response time at the stimulation frequency. Conclusion: Similar to previous studies, the modulation effect of C-tDCS on sustained attention is weak and unstable. In contrast, the O-tDCS effectively and systematically enhances sustained attention by optimizing vigilance fluctuation. The modulation effect of O-tDCS is probably driven by neural oscillations at the infraslow frequency range.

5.
Neuroreport ; 33(3): 137-144, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35139061

RESUMO

BACKGROUND: Brain-computer interface (BCI) is a promising neurorehabilitation strategy for ameliorating post-stroke function disorders. Physiological changes in the brain, such as functional near-infrared spectroscopy (fNIRS) dedicated to exploring cerebral circulatory responses during neurological rehabilitation tasks, are essential for gaining insights into neurorehabilitation mechanisms. However, the relationship between the neurovascular responses in different brain regions under rehabilitation tasks remains unknown. OBJECTIVE: The present study explores the fNIRS interactions between brain regions under different motor imagery (MI) tasks, emphasizing functional characteristics of brain network patterns and BCI motor task classification. METHODS: Granger causality analysis (GCA) is carried out for oxyhemoglobin data from 29 study participants in left- and right-hand MI tasks. RESULTS: According to research findings, homozygous and heterozygous states in the two brain connectivity modes reveal one and nine channel pairs, respectively, with significantly different (P < 0.05) GC values under the left- and right-hand MI tasks in the population. With reference to the total 10 channel pairs of causality differences between the two brain working states, a support vector machine is used to classify the two tasks with an overall accuracy of 83% for five-fold cross-validation. CONCLUSION: As demonstrated in the present study, fNIRS offers causality patterns in different brain states of MIBCI motor tasks. The research findings show that fNIRS causality can be used to assess different states of the brain, providing theoretical support for its application to neurorehabilitation assessment protocols to ultimately improve patients' quality of life.Video Abstract: http://links.lww.com/WNR/A653.


Assuntos
Interfaces Cérebro-Computador , Espectroscopia de Luz Próxima ao Infravermelho , Encéfalo/diagnóstico por imagem , Eletroencefalografia/métodos , Humanos , Imaginação/fisiologia , Qualidade de Vida , Espectroscopia de Luz Próxima ao Infravermelho/métodos
6.
Front Hum Neurosci ; 15: 627100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366808

RESUMO

BACKGROUND: In combined with neurofeedback, Motor Imagery (MI) based Brain-Computer Interface (BCI) has been an effective long-term treatment therapy for motor dysfunction caused by neurological injury in the brain (e.g., post-stroke hemiplegia). However, individual neurological differences have led to variability in the single sessions of rehabilitation training. Research on the impact of short training sessions on brain functioning patterns can help evaluate and standardize the short duration of rehabilitation training. In this paper, we use the electroencephalogram (EEG) signals to explore the brain patterns' changes after a short-term rehabilitation training. MATERIALS AND METHODS: Using an EEG-BCI system, we analyzed the changes in short-term (about 1-h) MI training data with and without visual feedback, respectively. We first examined the EEG signal's Mu band power's attenuation caused by Event-Related Desynchronization (ERD). Then we use the EEG's Event-Related Potentials (ERP) features to construct brain networks and evaluate the training from multiple perspectives: small-scale based on single nodes, medium-scale based on hemispheres, and large-scale based on all-brain. RESULTS: Results showed no significant difference in the ERD power attenuation estimation in both groups. But the neurofeedback group's ERP brain network parameters had substantial changes and trend properties compared to the group without feedback. The neurofeedback group's Mu band power's attenuation increased but not significantly (fitting line slope = 0.2, t-test value p > 0.05) after the short-term MI training, while the non-feedback group occurred an insignificant decrease (fitting line slope = -0.4, t-test value p > 0.05). In the ERP-based brain network analysis, the neurofeedback group's network parameters were attenuated in all scales significantly (t-test value: p < 0.01); while the non-feedback group's most network parameters didn't change significantly (t-test value: p > 0.05). CONCLUSION: The MI-BCI training's short-term effects does not show up in the ERD analysis significantly but can be detected by ERP-based network analysis significantly. Results inspire the efficient evaluation of short-term rehabilitation training and provide a useful reference for subsequent studies.

7.
Talanta ; 154: 99-108, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27154654

RESUMO

Polydimethylsiloxane (PDMS) stationary phases functionalized with multi-walled carbon nanotubes (MWCNTs) and graphene, respectively, for the columns in micro gas chromatography are presented in this paper. To exploit the merits of MWCNTs and graphene in terms of their high specific surface area, low surface energy and chemical inertness, experimental conditions for separation (heating rate and final temperature of temperature programming, flow rate of carrier gas and the volume of samples injection) are investigated, and separations of both polar and nonpolar compound mixtures under these conditions are performed. Compared with PDMS-only coated stationary phases, the functionalization of the phases with carbon nano-materials improves the performance of columns in separation, repeatability, stability and revolution significantly.

8.
Environ Sci Pollut Res Int ; 22(21): 16889-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26104904

RESUMO

In this study, coarse sand-supported zero valent iron (ZVI) composite was synthesized by adding sodium alginate to immobilize. Composite was detected by scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). SEM results showed that composite had core-shell structure and a wide porous distribution pattern. The synthesized composite was used for degradation of 2,4-dichlorophenol (2,4-DCP) contamination in groundwater. Experimental results demonstrated that degradation mechanism of 2,4-DCP using coarse sand-supported ZVI included adsorption, desorption, and dechlorination. 2,4-DCP adsorption was described as pseudo-second-order kinetic model. It was concluded that dechlorination was the key reaction pathway, ZVI and hydrogen are prime reductants in dechlorination of 2,4-DCP using ZVI.


Assuntos
Alginatos/química , Clorofenóis/isolamento & purificação , Água Subterrânea/química , Ferro/química , Dióxido de Silício/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Cinética , Microscopia Eletrônica de Varredura , Modelos Teóricos , Propriedades de Superfície , Purificação da Água/métodos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA