Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.098
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806060

RESUMO

Asymmetric catalysis enables the synthesis of optically active compounds, often requiring the differentiation between two substituents on prochiral substrates1. Despite decades of development of mainly noble metal catalysts, achieving differentiation between substituents with similar steric and electronic properties remains a notable challenge2,3. Here we introduce a class of Earth-abundant manganese catalysts for the asymmetric hydrogenation of dialkyl ketimines to give a range of chiral amine products. These catalysts distinguish between pairs of minimally differentiated alkyl groups bound to the ketimine, such as methyl and ethyl, and even subtler distinctions, such as ethyl and n-propyl. The degree of enantioselectivity can be adjusted by modifying the components of the chiral manganese catalyst. This reaction demonstrates a wide substrate scope and achieves a turnover number of up to 107,800. Our mechanistic studies indicate that exceptional stereoselectivity arises from the modular assembly of confined chiral catalysts and cooperative non-covalent interactions between the catalyst and the substrate.

2.
Genome Res ; 34(2): 310-325, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479837

RESUMO

In diploid mammals, allele-specific three-dimensional (3D) genome architecture may lead to imbalanced gene expression. Through ultradeep in situ Hi-C sequencing of three representative somatic tissues (liver, skeletal muscle, and brain) from hybrid pigs generated by reciprocal crosses of phenotypically and physiologically divergent Berkshire and Tibetan pigs, we uncover extensive chromatin reorganization between homologous chromosomes across multiple scales. Haplotype-based interrogation of multi-omic data revealed the tissue dependence of 3D chromatin conformation, suggesting that parent-of-origin-specific conformation may drive gene imprinting. We quantify the effects of genetic variations and histone modifications on allelic differences of long-range promoter-enhancer contacts, which likely contribute to the phenotypic differences between the parental pig breeds. We also observe the fine structure of somatically paired homologous chromosomes in the pig genome, which has a functional implication genome-wide. This work illustrates how allele-specific chromatin architecture facilitates concomitant shifts in allele-biased gene expression, as well as the possible consequential phenotypic changes in mammals.


Assuntos
Cromatina , Cromossomos , Animais , Suínos/genética , Cromatina/genética , Haplótipos , Cromossomos/genética , Genoma , Mamíferos/genética
3.
Proc Natl Acad Sci U S A ; 121(3): e2313387121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190529

RESUMO

The studies on the origin of versatile oxidation pathways toward targeted pollutants in the single-atom catalysts (SACs)/peroxymonosulfate (PMS) systems were always associated with the coordination structures rather than the perspective of pollutant characteristics, and the analysis of mechanism commonality is lacking. In this work, a variety of single-atom catalysts (M-SACs, M: Fe, Co, and Cu) were fabricated via a pyrolysis process using lignin as the complexation agent and substrate precursor. Sixteen kinds of commonly detected pollutants in various references were selected, and their lnkobs values in M-SACs/PMS systems correlated well (R2 = 0.832 to 0.883) with their electrophilic indexes (reflecting the electron accepting/donating ability of the pollutants) as well as the energy gap (R2 = 0.801 to 0.840) between the pollutants and M-SACs/PMS complexes. Both the electron transfer process (ETP) and radical pathways can be significantly enhanced in the M-SACs/PMS systems, while radical oxidation was overwhelmed by the ETP oxidation toward the pollutants with lower electrophilic indexes. In contrast, pollutants with higher electrophilic indexes represented the weaker electron-donating capacity to the M-SACs/PMS complexes, which resulted in the weaker ETP oxidation accompanied with noticeable radical oxidation. In addition, the ETP oxidation in different M-SACs/PMS systems can be regulated via the energy gaps between the M-SACs/PMS complexes and pollutants. As a result, the Fenton-like activities in the M-SACs/PMS systems could be well modulated by the reaction pathways, which were determined by both electrophilic indexes of pollutants and single-atom sites. This work provided a strategy to establish PMS-based AOP systems with tunable oxidation capacities and pathways for high-efficiency organic decontamination.

4.
Proc Natl Acad Sci U S A ; 120(47): e2305134120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37967222

RESUMO

Fast and slow earthquakes are two modes of energy release by the slip in tectonic fault rupture. Although fast and slow slips were observed in the laboratory stick-slip experiments, due to the sampling rate limitation, the details of the fault thickness variation were poorly understood. Especially, why a single fault would show different modes of slip remains elusive. Herein, we report on ring shear experiments with an ultrahigh sampling rate (10 MHz) that illuminate the different physical processes between fast and slow slip events. We show that the duration of slips ranged from dozens to hundreds of milliseconds. Fast slip events are characterized by continuous large-amplitude AE (acoustic emission) and somewhat intricate variation of the sample thickness: A short compaction pulse during the rapid release of stress is followed by dilation and vibrations of the sample thickness. As the slip ends, the thickness of the sample first recovers by slow compaction and then dilates again before nucleation of the following slip event. In contrast, during slow slip events, the shear stress reduction is accompanied by intermittent bursts of low-amplitude AE and sample dilation. We observed the detailed thickness variation during slips and found that dilation occurs during both fast and slow slips, which is consistent with natural observations of coseismic dilatation. This study may be used to reveal the mechanism of fault slips during fast and slow earthquakes, which explain the potential effect of fast and slow slips on stress redistribution and structural rearrangement in faults.

5.
PLoS Genet ; 19(6): e1010746, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37289658

RESUMO

Pigeons (Columba livia) are among a select few avian species that have developed a specialized reproductive mode wherein the parents produce a 'milk' in their crop to feed newborn squabs. Nonetheless, the transcriptomic dynamics and role in the rapid transition of core crop functions during 'lactation' remain largely unexplored. Here, we generated a de novo pigeon genome assembly to construct a high resolution spatio-temporal transcriptomic landscape of the crop epithelium across the entire breeding stage. This multi-omics analysis identified a set of 'lactation'-related genes involved in lipid and protein metabolism, which contribute to the rapid functional transitions in the crop. Analysis of in situ high-throughput chromatin conformation capture (Hi-C) sequencing revealed extensive reorganization of promoter-enhancer interactions linked to the dynamic expression of these 'lactation'-related genes between stages. Moreover, their expression is spatially localized in specific epithelial layers, and can be correlated with phenotypic changes in the crop. These results illustrate the preferential de novo synthesis of 'milk' lipids and proteins in the crop, and provides candidate enhancer loci for further investigation of the regulatory elements controlling pigeon 'lactation'.


Assuntos
Columbidae , Transcriptoma , Animais , Feminino , Transcriptoma/genética , Columbidae/genética , Columbidae/metabolismo , Perfilação da Expressão Gênica , Leite , Lactação
6.
Acc Chem Res ; 57(2): 247-256, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38129325

RESUMO

ConspectusIndustrial urea synthesis consists of the Haber-Bosch process to produce ammonia and the subsequent Bosch-Meiser process to produce urea. Compared to the conventional energy-intensive urea synthetic protocol, electrocatalytic C-N coupling from CO2 and nitrogenous species emerges as a promising alternative to construct a C-N bond under ambient conditions and to realize the direct synthesis of high-value urea products via skipping the intermediate step of ammonia production. The main challenges for electrocatalytic C-N coupling lie in the intrinsic inertness of molecules and the competition with parallel side reactions. In this Account, we give an overview of our recent progress toward electrocatalytic C-N coupling from CO2 and nitrogenous species toward urea synthesis.To begin, we present the direct transformation of dinitrogen (N2) to the C-N bond by coelectrolysis, verifying the feasibility of direct urea synthesis from N2 and CO2 under ambient conditions. In contrast to the highly endothermic step of proton coupling in conventional N2 reduction, the N2 activation and construction of the C-N bond arise from a thermodynamic spontaneous reaction between CO (derived from CO2 reduction) and *N═N* (the asterisks represent the adsorption sites), and the crucial *NCON* species mediates the interconversion of N2, CO2, and urea. Based on theoretical guidance, the effect of N2 adsorption configurations on C-N coupling is investigated on the model catalysts with defined active site structure, revealing that the side-on adsorption rather than the end-on one favors C-N coupling and urea synthesis.Electrocatalytic C-N coupling of CO2 and nitrate (NO3-) is also an effective pathway to achieve direct urea synthesis. We summarize our progress in the C-N coupling of CO2 and NO3-, from the aspects of modulating intermediate species adsorption and reaction paths, monitoring irreversible and reversible reconstruction of active sites, and precisely constructing active sites to match activities and to boost the electrocatalytic urea synthesis. In each case, in situ electrochemical technologies and density functional theory (DFT) calculations are carried out to unveil the microscopic mechanisms for the promotion of C-N coupling and the enhancement of urea synthesis activity. In the last section, we put forward the limitations, challenges, and perspectives in these two coupling systems for further development of electrocatalytic urea synthesis.

7.
J Biol Chem ; 299(6): 104757, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116707

RESUMO

Elucidating the regulatory mechanisms of human adipose tissues (ATs) evolution is essential for understanding human-specific metabolic regulation, but the functional importance and evolutionary dynamics of three-dimensional (3D) genome organizations of ATs are not well defined. Here, we compared the 3D genome architectures of anatomically distinct ATs from humans and six representative mammalian models. We recognized evolutionarily conserved and human-specific chromatin conformation in ATs at multiple scales, including compartmentalization, topologically associating domain (TAD), and promoter-enhancer interactions (PEI), which have not been described previously. We found PEI are much more evolutionarily dynamic with respect to compartmentalization and topologically associating domain. Compared to conserved PEIs, human-specific PEIs are enriched for human-specific sequence, and the binding motifs of their potential mediators (transcription factors) are less conserved. Our data also demonstrated that genes involved in the evolutionary dynamics of chromatin organization have weaker transcriptional conservation than those associated with conserved chromatin organization. Furthermore, the genes involved in energy metabolism and the maintenance of metabolic homeostasis are enriched in human-specific chromatin organization, while housekeeping genes, health-related genes, and genetic variations are enriched in evolutionarily conserved compared to human-specific chromatin organization. Finally, we showed extensively divergent human-specific 3D genome organizations among one subcutaneous and three visceral ATs. Together, these findings provide a global overview of 3D genome architecture dynamics between ATs from human and mammalian models and new insights into understanding the regulatory evolution of human ATs.


Assuntos
Tecido Adiposo , Cromatina , Genoma , Animais , Humanos , Cromatina/genética , Montagem e Desmontagem da Cromatina , Genômica , Homeostase , Mamíferos , Tecido Adiposo/metabolismo
8.
BMC Genomics ; 25(1): 374, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627644

RESUMO

BACKGROUND: Fatty liver hemorrhagic syndrome (FLHS) in the modern poultry industry is primarily caused by nutrition. Despite encouraging progress on FLHS, the mechanism through which nutrition influences susceptibility to FLHS is still lacking in terms of epigenetics. RESULTS: In this study, we analyzed the genome-wide patterns of trimethylated lysine residue 27 of histone H3 (H3K27me3) enrichment by chromatin immunoprecipitation-sequencing (ChIP-seq), and examined its association with transcriptomes in healthy and FLHS hens. The study results indicated that H3K27me3 levels were increased in the FLHS hens on a genome-wide scale. Additionally, H3K27me3 was found to occupy the entire gene and the distant intergenic region, which may function as silencer-like regulatory elements. The analysis of transcription factor (TF) motifs in hypermethylated peaks has demonstrated that 23 TFs are involved in the regulation of liver metabolism and development. Transcriptomic analysis indicated that differentially expressed genes (DEGs) were enriched in fatty acid metabolism, amino acid, and carbohydrate metabolism. The hub gene identified from PPI network is fatty acid synthase (FASN). Combined ChIP-seq and transcriptome analysis revealed that the increased H3K27me3 and down-regulated genes have significant enrichment in the ECM-receptor interaction, tight junction, cell adhesion molecules, adherens junction, and TGF-beta signaling pathways. CONCLUSIONS: Overall, the trimethylation modification of H3K27 has been shown to have significant regulatory function in FLHS, mediating the expression of crucial genes associated with the ECM-receptor interaction pathway. This highlights the epigenetic mechanisms of H3K27me3 and provides insights into exploring core regulatory targets and nutritional regulation strategies in FLHS.


Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Dieta com Restrição de Proteínas , Fígado Gorduroso , Transtornos do Crescimento , Comunicação Interventricular , Animais , Feminino , Histonas/metabolismo , Galinhas/genética , Galinhas/metabolismo , Epigênese Genética , Fígado Gorduroso/genética , Fígado Gorduroso/veterinária , Hemorragia/genética , Transcriptoma
9.
J Am Chem Soc ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717282

RESUMO

In this study, we investigated the role of aluminum cations in facilitating hydride transfer during the hydrogenation of imines within the context of Noyori-type metal-ligand cooperative catalysis. We propose a novel model involving aluminum cations directly coordinated with imines to induce activation from the lone pair electron site, a phenomenon termed σ-induced activation. The aluminum metal-hydride amidate complex ("HMn-NAl") exhibits a higher ability of hydride transfer in the hydrogenation of imines compared to its lithium counterpart ("HMn-NLi"). Density functional theory (DFT) calculations uncover that the aluminum cation efficiently polarizes unsaturated bonds through σ-electron-induced activation in the transition state of hydride transfer, thereby enhancing substrate electrophilicity more efficiently. Additionally, upon substrate coordination, aluminum's coordination saturation improves the hydride nucleophilicity of the HMn-NAl complex via the breakage of the Al-H coordination bond.

10.
Anal Chem ; 96(12): 4809-4816, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466895

RESUMO

As an effective ECL emitter, tetraphenylethene (TPE)-based molecules have recently been reported with aggregation-induced electrochemiluminescence (AIECL) property, while it is still a big challenge to control its aggregation states and obtain uniform aggregates with intense ECL emission. In this study, we develop three TPE derivatives carrying a pyridinium group, an alkyl chain, and a quaternary ammonium group via the Menschutkin reaction. The resulting molecules exhibit significantly red-shifted FL and enhanced ECL emissions due to the tunable reduction of the energy gap between the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs). More importantly, the amphiphilicity of the as-developed molecules enables their spontaneous self-assembly into well-controlled spherical nanoaggregates, and the ECL intensity of nanoaggregates with 3 -CH2- (named as C3) is 17.0-fold higher compared to that of the original 4-(4-(1,2,2-triphenylvinyl)phenyl)pyridine (TPP) molecule. These cationic nanoaggregates demonstrate a high affinity toward bacteria, and an ECL sensor for the profiling of Escherichia coli (E. coli) was developed with a broad linear range and good selectivity in the presence of an E. coli-specific aptamer. This study provides an effective way to enhance the ECL emission of TPE molecules through their derivatization and a simple way to prepare well-controlled AIECL nanoaggregates for ECL application.


Assuntos
Técnicas Biossensoriais , Escherichia coli , Limite de Detecção , Medições Luminescentes/métodos , Fotometria , Oligonucleotídeos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
11.
Small ; 20(3): e2305759, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37700638

RESUMO

Metal-free carbon-based materials have gained recognition as potential electrocatalysts for the oxygen reduction reaction (ORR) in new environmentally-friendly electrochemical energy conversion technologies. The presence of effective active centers is crucial for achieving productive ORR. In this study, we present the synthesis of two metal-free dibenzo[a,c]phenazine-based covalent organic frameworks (DBP-COFs), specifically JUC-650 and JUC-651, which serve as ORR electrocatalysts. Among them, JUC-650 demonstrates exceptional catalytic performance for ORR in alkaline electrolytes, exhibiting an onset potential of 0.90 V versus RHE and a half-wave potential of 0.72 V versus RHE. Consequently, JUC-650 stands out as one of the most outstanding metal-free COF-based ORR electrocatalysts report to date. Experimental investigations and density functional theory calculations confirm that modulation of the frameworks' electronic configuration allows for the reduction of adsorption energy at the Schiff-base carbon active sites, leading to more efficient ORR processes. Moreover, the DBP-COFs can be assembled as excellent air cathode catalysts for zinc-air batteries (ZAB), rivaling the performance of commercial Pt/C. This study provides valuable insights for the development of efficient metal-free organoelectrocatalysts through precise regulation of active site strategies.

12.
Plant Biotechnol J ; 22(7): 1800-1811, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38344883

RESUMO

The plant rapid alkalinization factor (RALF) peptides function as key regulators in cell growth and immune responses through the receptor kinase FERONIA (FER). In this study, we report that the transcription factor FgPacC binds directly to the promoter of FgRALF gene, which encodes a functional homologue of the plant RALF peptides from the wheat head blight fungus Fusarium graminearum (FgRALF). More importantly, FgPacC promotes fungal infection via host immune suppression by activating the expression of FgRALF. The FgRALF peptide also exhibited typical activities of plant RALF functions, such as inducing plant alkalinization and inhibiting cell growth, including wheat (Triticum aestivum), tomato (Solanum lycopersicum) and Arabidopsis thaliana. We further identified the wheat receptor kinase FERONIA (TaFER), which is capable of restoring the defects of the A. thaliana FER mutant. In addition, we found that FgRALF peptide binds to the extracellular malectin-like domain (ECD) of TaFER (TaFERECD) to suppress the PAMP-triggered immunity (PTI) and cell growth. Overexpression of TaFERECD in A. thaliana confers plant resistance to F. graminearum and protects from FgRALF-induced cell growth inhibition. Collectively, our results demonstrate that the fungal pathogen-secreted RALF mimic suppresses host immunity and inhibits cell growth via plant FER receptor. This establishes a novel pathway for the development of disease-resistant crops in the future without compromising their yield potential.


Assuntos
Arabidopsis , Fusarium , Imunidade Vegetal , Arabidopsis/imunologia , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Triticum/microbiologia , Triticum/genética , Triticum/imunologia , Triticum/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Regulação da Expressão Gênica de Plantas , Fosfotransferases/metabolismo , Fosfotransferases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Solanum lycopersicum/metabolismo , Proteínas Serina-Treonina Quinases
13.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35514181

RESUMO

With the development of high-throughput technologies, the accumulation of large amounts of multidimensional genomic data provides an excellent opportunity to study the multilevel biological regulatory relationships in cancer. Based on the hypothesis of competitive endogenous ribonucleic acid (RNA) (ceRNA) network, lncRNAs can eliminate the inhibition of microRNAs (miRNAs) on their target genes by binding to intracellular miRNA sites so as to improve the expression level of these target genes. However, previous studies on cancer expression mechanism are mostly based on individual or two-dimensional data, and lack of integration and analysis of various RNA-seq data, making it difficult to verify the complex biological relationships involved. To explore RNA expression patterns and potential molecular mechanisms of cancer, a network-regularized sparse orthogonal-regularized joint non-negative matrix factorization (NSOJNMF) algorithm is proposed, which combines the interaction relations among RNA-seq data in the way of network regularization and effectively prevents multicollinearity through sparse constraints and orthogonal regularization constraints to generate good modular sparse solutions. NSOJNMF algorithm is performed on the datasets of liver cancer and colon cancer, then ceRNA co-modules of them are recognized. The enrichment analysis of these modules shows that >90% of them are closely related to the occurrence and development of cancer. In addition, the ceRNA networks constructed by the ceRNA co-modules not only accurately mine the known correlations of the three RNA molecules but also further discover their potential biological associations, which may contribute to the exploration of the competitive relationships among multiple RNAs and the molecular mechanisms affecting tumor development.


Assuntos
Neoplasias do Colo , MicroRNAs , RNA Longo não Codificante , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genômica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética
14.
Am J Kidney Dis ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38750878

RESUMO

RATIONALE & OBJECTIVE: Light and heavy chain deposition disease (LHCDD) is a rare form of monoclonal immunoglobulin (Ig) deposition disease, and limited clinical data are available characterizing this condition. Here we describe the clinicopathological characteristics and outcomes of LHCDD. STUDY DESIGN: Case series. SETTING & PARTICIPANTS: 13 patients with biopsy-proven LHCDD diagnosed between January 2008 and December 2022 at one of 2 Chinese medical centers. FINDINGS: Among the 13 patients described, 6 were men and 7 were women, with a mean age of 52.6±8.0 years. Patients presented with hypertension (76.9%), anemia (84.6%), increased serum creatinine concentrations (84.6%; median, 1.7mg/dL), proteinuria (100%; average urine protein, 3.0g/24h), nephrotic syndrome (30.8%), and microscopic hematuria (76.9%). Serum immunofixation electrophoresis showed monoclonal Ig for 11 patients (84.6%). Serum free light chain ratios were abnormal in 11 patients (84.6%), and heavy/light chain ratios were abnormal in 9 of 10 patients (90%) with available data. Five patients were diagnosed with multiple myeloma. A histological diagnosis of nodular mesangial sclerosis was made in 10 patients (76.9%). Immunofluorescence demonstrated deposits of IgG subclass in 7 patients (γ-κ, n=4; γ-λ, n=3) and IgA in 5 patients (α-κ, n=2; α-λ, n=3). Six patients underwent IgG subclass staining (γ1, n=3; γ2, n=2; γ3, n=1). The deposits of IgD-κ were confirmed by mass spectrometry in 1 patient. Among 12 patients for whom data were available during a median of 26.5 months, 11 received chemotherapy and 1 received conservative treatment. One patient died, and disease progressed to kidney failure in 3 (25%). Among the 9 patients evaluable for hematological and kidney disease progression, 5 (56%) had a hematologic response and 1 (11%) exhibited improvement in kidney disease. LIMITATIONS: Retrospective descriptive study, limited number of patients, urine protein electrophoresis or immunofixation electrophoresis test results missing for most patients. CONCLUSIONS: In this case series of LHCDD, light and heavy chain deposition in kidney tissues were most frequent with monoclonal IgG1-κ. Among patients with evaluable data, more than half had a hematologic response, but a kidney response was uncommon.

15.
Glob Chang Biol ; 30(5): e17346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38798167

RESUMO

Photosynthetically active radiation (PAR) is typically defined as light with a wavelength within 400-700 nm. However, ultra-violet (UV) radiation within 280-400 nm and far-red (FR) radiation within 700-750 nm can also excite photosystems, though not as efficiently as PAR. Vegetation and land surface models (LSMs) typically do not explicitly account for UV's contribution to energy budgets or photosynthesis, nor FR's contribution to photosynthesis. However, whether neglecting UV and FR has significant impacts remains unknown. We explored how canopy radiative transfer (RT) and photosynthesis are impacted when explicitly implementing UV in the canopy RT model and accounting for UV and FR in the photosynthesis models within a next-generation LSM that can simulate hyperspectral canopy RT. We validated our improvements using photosynthesis measurements from plants under different light sources and intensities and surface reflection from an eddy-covariance tower. Our model simulations suggested that at the whole plant level, after accounting for UV and FR explicitly, chlorophyll content, leaf area index (LAI), clumping index, and solar radiation all impact the modeling of gross primary productivity (GPP). At the global scale, mean annual GPP within a grid would increase by up to 7.3% and the increase is proportional to LAI; globally integrated GPP increases by 4.6 PgC year-1 (3.8% of the GPP without accounting for UV + FR). Further, using PAR to proxy UV could overestimate surface albedo by more than 0.1, particularly in the boreal forests. Our results highlight the importance of improving UV and FR in canopy RT and photosynthesis modeling and the necessity to implement hyperspectral or multispectral canopy RT schemes in future vegetation and LSMs.


Assuntos
Fotossíntese , Raios Ultravioleta , Folhas de Planta/efeitos da radiação , Modelos Teóricos , Clorofila/metabolismo , Modelos Biológicos , Plantas/efeitos da radiação , Plantas/metabolismo
16.
Opt Lett ; 49(10): 2637-2640, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748124

RESUMO

Optical-resolution photoacoustic microscopy (OR-PAM) excels in precisely imaging a biological tissue based on absorption contrast. However, existing OR-PAMs are confined by fixed compromises between spatial resolution and field of view (FOV), preventing the integration of large FOV and local high-resolution within one system. Here, we present a non-telecentric OR-PAM (nTC-PAM) that empowers efficient adaptation of FOV and spatial resolution to match the multi-scale requirement of diverse biological imaging. Our method allows for a large-scale transformation in FOV and even surpassing the nominal FOV of the objective with minimal marginal degradation of the lateral resolution. We demonstrate the advantage of nTC-PAM through multi-scale imaging of the leaf phantom, mouse ear, and cortex. The results reveal that nTC-PAM can switch the FOV and spatial resolution to meet the requirements of different biological tissues, such as large-scale imaging of the whole cerebral cortex and high-resolution imaging of microvascular structures in local brain regions.


Assuntos
Microscopia , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Animais , Camundongos , Microscopia/métodos , Orelha/diagnóstico por imagem , Orelha/irrigação sanguínea , Imagens de Fantasmas
17.
Chemistry ; 30(14): e202303481, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38239082

RESUMO

Glycerol is one of the important biomass-derived feedstocks and the high-value utilizations of glycerol have attracted much attentions in recent years. Herein, we report a manganese catalyzed dehydrogenative coupling of glycerol with amines for the synthesis of substituted 2-methylquinoxalines, 2-ethylbenzimidazoles, and α-aminoketones without any external oxidant. In these reactions, NHC-based pincer manganese complex featuring a pyridine backbone displayed high catalytic activity and selectivity, in which hydrogen and water were produced as the only by-products using glycerol as a C3 synthon.

18.
Brain Behav Immun ; 116: 286-302, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38128623

RESUMO

Psychological stress is a crucial factor in the development of many skin diseases, and the stigma caused by skin disorders may further increase the psychological burden, forming a vicious cycle of psychological stress leading to skin diseases. Therefore, understanding the relationship between stress and skin diseases is necessary. The skin, as the vital interface with the external environment, possesses its own complex immune system, and the neuroendocrine system plays a central role in the stress response of the body. Stress-induced alterations in the immune system can also disrupt the delicate balance of immune cells and inflammatory mediators in the skin, leading to immune dysregulation and increased susceptibility to various skin diseases. Stress can also affect the skin barrier function, impair wound healing, and promote the release of pro-inflammatory cytokines, thereby exacerbating existing skin diseases such as psoriasis, atopic dermatitis, acne, and urticaria. In the present review, we explored the intricate relationship between stress and skin diseases from a neuroendocrine-immune interaction perspective. We explored the occurrence and development of skin diseases in the context of stress, the stress models for skin diseases, the impact of stress on skin function and diseases, and relevant epidemiological studies and clinical trials. Understanding the relationship between stress and skin diseases from a neuroendocrine-immune interaction perspective provides a comprehensive framework for targeted interventions and new insights into the diagnosis and treatment of skin diseases.


Assuntos
Dermatite Atópica , Psoríase , Dermatopatias , Humanos , Dermatopatias/psicologia , Pele , Dermatite Atópica/psicologia , Sistemas Neurossecretores , Estresse Psicológico
19.
Langmuir ; 40(19): 9985-9992, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38699919

RESUMO

The limited specific surface area (SSA), long preparation period, and high cost are significant challenges for carbon xerogels (CXs). To overcome these limitations, we propose an approach to prepare tannin-resorcinol-formaldehyde-based CXs through template-catalyzed in situ polymerization. ZnCl2 acts as a catalyst and significantly accelerates the polymerization reaction through the coordination of Zn2+ to the carbonyl group in formaldehyde, while atmospheric drying instead of special drying and without solvent exchange reduces the preparation period to 24 h. In addition, ZnCl2 acts as an activator for the formation of many pores. Plant-derived tannins not only reduce the preparation cost but also regulate the pore structure. The resulted CXs with hierarchical porous structures show an optimal SSA of 1308 m2/g, high adsorption capabilities (for cationic, nitrosoaniline dyes, metal, and nonmetallic ions, especially for methylene blue with 454.93 mg/g), low shrinkage down to 10%, and reusability with 92.9% retention after 5 cycles. This work provides a promising and cost-effective method for the large-scale preparation of porous carbon materials with large SSA, offering potential applications in adsorption, energy storage, and catalysis.

20.
Langmuir ; 40(3): 1941-1949, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38207337

RESUMO

The tribological behavior of carboxylic acids, especially oleic acid, in boundary lubrication conditions is a subject of interest. This study presents the results of four-ball tribological tests conducted under varying contact pressures and sliding speeds. The findings reveal a critical turning speed within a confined zone, which causes a significant change in the frictional performances of oleic acid, leading to the formation of an ultralow wear tribofilm. This tribofilm, predominantly composed of oxyhydrogen compounds and hydrocarbons with more than five carbon atoms, is generated by the molecular action of oleic acid. Reactive nonequilibrium molecular dynamics simulations demonstrate that the shear speed-dependent decomposition modes of oleic acid and the transformation of the lubrication slip interface are the fundamental processes underlying the formation of this ultralow-wear boundary tribofilm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA