Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Bases de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(3): 327-337, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38205789

RESUMO

ConspectusThe last two decades have witnessed a tremendous development of crystalline microporous adsorbents in a wide range of applications including molecular adsorption, storage and separation, purification, as well as catalysis. The main players as porous materials that have contributed to the developments are extended molecular frameworks (e.g., metal-organic frameworks, MOFs; covalent-organic frameworks, COFs) or discrete porous molecules (e.g., metal-organic cages, MOCs; porous organic cages, POCs) thanks to the high degrees of freedom in their structural designability and tunability. To overcome the processability issue originating from their powder forms after synthesis, one main strategy is to hybridize the microporous adsorbents as pore-containing fillers with solvents or polymers as processable matrices to produce porous soft materials, such as porous liquids, gels/aerogels, and mixed-matrix membranes, depending on the form of matrix used. Nevertheless, the fabrication of "ideal" hybrid materials relies on the homogeneous distribution of the pore-containing fillers within the matrices. It is still challenging to find a versatile way to solve the aggregation issues of fillers and their insufficient interaction with the matrices, which are concerned with inhibiting the translation of the distinctive properties of microporous adsorbents into the obtained hybrid soft materials.Herein, we describe a new bottom-up approach for the fabrication of "pore-networked soft materials" based on the concept of directly interconnecting the pore-containing fillers into a continuous pore network within the matrices. The advantages of the pore-networking strategy lie in two main aspects: (i) the elimination of the need to struggle with the aggregation issue of fillers due to their overall interconnection throughout the matrices; (ii) the generation of continuous pore networks that guarantee the efficient molecular mass transfer in the materials. In this Account, we summarize our state-of-the-art progress of pore-networked soft materials based on the use of MOCs, alternatively called metal-organic polyhedra (MOPs) herein, as pore units for the pore network construction. The good solubility of MOPs in organic solvents allows them to be feasibly processed in solution, wherein the coordination of MOPs with organic linkers leads to the formation of linked MOP gels featuring not only intrinsic MOP cavities but also tunable extrinsic porosities generated between linked MOPs through the control of MOP/linker structures and network connectivity. Furthermore, the matrix of the linked MOP network, here referred to as the continuous phase with respect to the entire porous MOP network, is not limited to the solvents. We anticipate that the implementation of air, liquids, and polymers as the matrices could result in different forms of pore-networked soft materials like aerogels, foams, gels, monoliths, and membranes. For instance, we demonstrate the fabrication of linked MOP aerogel and permanently porous gel with their potential applications on selective CO2 photoreduction and gas sorption, respectively. We believe that the pore-network strategies will advance the development of porous soft materials featuring unique advantages and properties beyond the current hybrid systems.

2.
J Am Chem Soc ; 146(22): 15479-15487, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38780095

RESUMO

The development of efficient and low-cost catalysts is essential for photocatalysis; however, the intrinsically low photocatalytic efficiency as well as the difficulty in using and recycling photocatalysts in powder morphology greatly limit their practical performance. Herein, we describe quasi-homogeneous photocatalysis to overcome these two limitations by constructing ultrastiff, hierarchically porous, and photoactive aerogels of conjugated microporous polymers (CMPs). The CMP aerogels exhibit low density but high stiffness beyond 105 m2 s-2, outperforming most low-density materials. Extraordinary stiffness ensures their use as robust scaffolds for scaled photocatalysis and recycling without damage at the macroscopic level. A challenging but desirable reaction for direct deaminative borylation is demonstrated using CMP aerogel-based quasi-homogeneous photocatalysis with gram-scale productivity and record-high efficiency under ambient conditions. Combined terahertz and transient absorption spectroscopic studies unveil the generation of high-mobility free carriers and long-lived excitonic species in the CMP aerogels, underlying the observed superior catalytic performance.

3.
Inorg Chem ; 63(12): 5559-5567, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38470047

RESUMO

Dinuclear ruthenium paddlewheel complexes exhibit high structural stability in redox reactions. The use of these chemical motifs for the construction of Ru-based metal-organic polyhedra (RuMOPs) provides a route for redox-active porous materials. However, there are few studies on the synthesis and characterization of RuMOPs due to the difficulty in controlling the assembly process via the ligand-exchange reaction of equatorial acetates of the diruthenium tetraacetate precursors with dicarboxylic acid ligands. In this study, we synthesized three novel cuboctahedral RuMOPs based on the Ru2(II/III)-paddlewheel units with different alkyl functionalizations on the benzene-1,3-dicarboxylate moieties. We evaluated the effect of external functionalization on the molecular packing and the porous and redox properties. The electrochemical measurements revealed the multielectron transferred redox process where the electron-donating/-withdrawing nature of the functional groups allows the control of the redox behavior.

4.
J Am Chem Soc ; 145(26): 14456-14465, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37350764

RESUMO

Porous liquids (PLs) are attractive materials because of their capability to combine the intrinsic porosity of microporous solids and the processability of liquids. Most of the studies focus on the synthesis of PLs with not only high porosity but also low viscosity by considering their transportation in industrial plants. However, a gap exists between PLs and solid adsorbents for some practical cases, where the liquid characteristics and mechanical stability without leakage are simultaneously required. Here, we fill in this gap by demonstrating a new concept of pore-networked gels, in which the solvent phase is trapped by molecular networks with accessible porosity. To achieve this, we fabricate a linked metal-organic polyhedra (MOPs) gel, followed by exchanging the solvent phase with a bulky liquid such as ionic liquids (ILs); the dimethylformamide solvent trapped inside the as-synthesized gel is replaced by the target IL, 1-butyl-3-methylimidazolium tetrafluoroborate, which in turn cannot enter MOP pores due to their larger molecular size. The remaining volatile solvents in the MOP cavities can then be removed by thermal activation, endowing the obtained IL gel (Gel_IL) with accessible microporosity. The CO2 capacities of the gels are greatly enhanced compared to the neat IL. The exchange with the IL also exerts a positive influence on the final gel performances such as mechanical properties and low volatility. Besides ILs, various functional liquids are shown to be amenable to this strategy to fabricate pore-networked gels with accessible porosity, demonstrating their potential use in the field of gas adsorption or separation.

5.
J Am Chem Soc ; 144(15): 6861-6870, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35315656

RESUMO

Hypercrosslinked polymers (HCPs), amorphous microporous three-dimensional networks based on covalent linkage of organic building blocks, are a promising class of materials due to their high surface area and easy functionalization; however, this type of material lacks processability due to its network rigidity based on covalent crosslinking. Indeed, the development of strategies to improve its solution processability for broader applications remains challenging. Although HCPs have similar three-dimensionally crosslinked networks to polymer gels, HCPs usually do not form gels but insoluble powders. Herein, we report the synthesis of HCP gels from a thermally induced polymerization of a tetrahedral monomer, which undergoes consecutive solubilization, covalent bond formation, colloidal formation, followed by their aggregation and percolation to yield a hierarchically porous network. The resulting gels feature concentration-dependent hierarchical porosities and mechanical stiffness. Furthermore, these HCP gels can be used as a platform to achieve molecular-level hybridization with a two-dimensional polymer during the HCP gel formation. This method provides functional gels and corresponding aerogels with the enhancement of porosities and mechanical stiffness. Used in column- and membrane-based molecular separation systems, the hybrid gels exhibited a separation of water contaminants with the efficiency of 97.9 and 98.6% for methylene blue and KMnO4, respectively. This result demonstrated the potentials of the HCP gels and their hybrid derivatives in separation systems requiring macroscopic scaffolds with hierarchical porosity.


Assuntos
Polímeros , Géis/química , Polimerização , Polímeros/química , Porosidade
6.
J Am Chem Soc ; 144(40): 18218-18222, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36069433

RESUMO

We report a multi-component synthetic strategy on a two-dimensional crystalline covalent organic framework (COF) by connecting acetonitrile with aromatic aldehyde and acetaldehyde moieties to form an unprecedented cyano-substituted buta-1,3-diene linkage. Different from most of the COFs that were crystallized from the condensations from two components, the presented COF is generated from two competitive and reversible reactions among three moieties. The buta-1,3-diene COF exhibits remarkable photoactivity with a low exciton binding energy of 44.4 ± 1.5 meV for promoted charge separation, which enables the buta-1,3-diene-linked COF as an efficient photocatalyst for various aerobic oxidation reactions under visible light. Our multi-component synthesis strategy may provide new sights for synthesizing COFs with structural diversity and functional variability that are hard to achieve by traditional COF synthesis.

7.
Phys Chem Chem Phys ; 20(18): 12827-12834, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29700522

RESUMO

A novel approach to prepare crystalline silica through calcination of the composite of silica and highly fluorinated graphene at a relatively low temperature is demonstrated. Silica and its composites with graphene and its derivatives (graphene, graphene oxide and graphene with various degrees of fluorination) were synthesized and then calcined at 900 °C in an air atmosphere. The results of X-ray-diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy reveal that cristobalite was produced through calcining composites of silica and highly fluorinated graphene under ambient air at a relatively low temperature (900 °C), while for the composites of silica and graphene and its derivatives, the calcined products are all amorphous. Thermal gravimetric analysis results indicate that the maximum decomposition temperature of functional groups in highly fluorinated graphene at air temperature is 457 °C, which is higher than that in medium fluorinated graphene, lower fluorinated graphene and graphene oxide (411.3 °C, 313.4 °C and 238.9 °C). A high degradation temperature of highly fluorinated graphene contributes to strong residual hydrogen bonding interactions at high temperature. FTIR results further illustrate that many residual hydrogen bonding interactions in composites of silica and highly fluorinated graphene at higher temperature result in enough linear structures. As a consequence, stronger residual hydrogen bonding interactions at high temperature in composites of silica and highly fluorinated graphene restrain the self-condensation of Si-OH groups and promote the formation of crystalline structures.

8.
Phys Chem Chem Phys ; 19(32): 21565-21574, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28766616

RESUMO

The investigation of the dispersion behavior of fluorinated MWCNTs (F-MWCNTs) is very important to understand their structure and take full advantage of their good properties. In this present paper, the dispersion behavior of F-MWCNTs with a low content and a high content of fluorine (denoted as lF-MWCNTs and hF-MWCNTs) was explored in 18 kinds of common solvents. The surface of hF-MWCNTs is considered to be a heterostructure consisting of fluorinated regions and aromatic regions, while lF-MWCNTs are inclined to be a homogeneous structure on the basis of their dispersion behavior. According to dispersion theory based on surface energy and Hansen solubility parameters (HSPs), it was indicated that the corresponding preferable solvents are different for different regions. As a result, good solvents of hF-MWCNTs are distributed in a quite wide scope while lF-MWCNTs can be dispersed only in a significantly narrow range of solvents. The HSPs of lF-MWCNTs and hF-MWCNTs are determined to be δD = 17.6 MPa1/2, δP = 11.8 MPa1/2, δH = 8.8 MPa1/2 and δD = 16.9 MPa1/2, δP = 9.3 MPa1/2, δH = 13.5 MPa1/2, respectively. As a result, mixed solvents of acetone and water were carefully tuned to be compatible with hF-MWCNTs. The dispersion behaviors of lF-MWCNTs and hF-MWCNTs in epoxy were also predicted according to HSPs. It was found that hF-MWCNTs maintain a stable dispersion in epoxy due to their heterogeneous structure at elevated temperatures.

9.
Phys Chem Chem Phys ; 19(29): 19442-19451, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28718469

RESUMO

Considering practical applications, the thermal/thermal oxidative stability of fluorinated graphene should be given sufficient attention. Herein, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR) were used to investigate in detail the differences in the thermal stabilities of two types of fluorinated samples, fluorinated graphene (FG) and fluorinated porous graphene (FPG) with various fluorine contents, respectively, as well as the reasons for these differences. It was demonstrated that the thermal stability of FG and FPG was improved upon increasing the fluorine content, which was mainly caused by the enhancement of bond energy of the covalent C-F bonds. Moreover, compared to that of the raw graphene samples, the thermal oxidative stability of FG was reduced due to the defects brought by fluorination, while the thermal oxidative stability of FPG was improved, originating from the inflaming retarding effect of the fluorine element. Interestingly, the thermal oxidative stability of the fluorinated samples was even better than their thermal stability. Using a comparison of the two types of fluorinated samples and support from the computational simulations of the model molecules, it was suggested that a greater amount of CFn (n = 2, 3) groups or defects in the FG samples resulted in its relatively worse thermal stabilities. Furthermore, electron paramagnetic resonance (EPR) spectroscopy was introduced to analyze the thermal stabilities of the fluorinated graphene samples as a novel method. The changes in the spin centers in samples after thermal treatment were studied, which indicated that the lower amount of the more stable spin centers of FPG was another reason leading to its more outstanding thermal stabilities in comparison to FG samples.

10.
Phys Chem Chem Phys ; 19(7): 5504-5512, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28165075

RESUMO

A facile way to prepare fluorinated graphene (FG) with a high fluorine content and controllable structure is important to achieve its full potential application. In this work, it was found that the fluorine to carbon (F/C) ratio of fluorinated graphene oxide (FGO) was nearly twice as much as that of fluorinated chemically reduced graphene oxide (FCrGO) after fluorination at the same temperature. Concerning the detailed effects of oxygenic groups on the fluorination and structure of fluorinated graphene (FG), graphene oxides with different oxygen contents were fluorinated under the same conditions. It was shown that oxygenic groups promote the fluorination reaction by activating the surrounding aromatic regions and taking part in the substitution reaction with fluorine radicals, among which, hydroxyls and carbonyls tend to be replaced by fluorine atoms. Moreover, the fluorination mainly occurs at the edges and defects of graphene sheets with a low oxygen content, while the highly oxidized graphene sheets are fluorinated both at the edges and basal planes simultaneously. This indicates that the quantity and location of the C-F bonds in FGO can be controlled by adjusting the species and content of oxygenic groups in the precursor graphene oxide.

11.
Phys Chem Chem Phys ; 19(35): 24076-24081, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28835956

RESUMO

Fluorinated graphene (FG) can be regarded as the representative two-dimensional (2D) material to study the characteristics of "2D chemistry", whereas its derivative reaction mechanism is still required to be revealed for the destination of deciduous fluorine atoms after defluorination of FG. Herein, we proposed a particular derivative reaction of FG by employing 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) as the attacking reagent, and the products were characterized via Electron Paramagnetic Resonance Spectroscopy (EPR), Mass Spectrometry (MS) and X-ray photoelectron spectroscopy (XPS). It was demonstrated that the defluorination caused by TEMPO occurred in a radical mechanism, thus leading to formations of new spin centers on graphene nanosheets as well as C[double bond, length as m-dash]C bonds. More importantly, the deciduous fluorine atoms after defluorination, which existed in TEMPO fluoride molecules, have been detected for the first time. Meanwhile, some TEMPO molecules were covalently grafted on the nanosheet, which resulted from the coupled reaction between TEMPO radical and the spin center on the FG nanosheet. These findings deepen the research of derivative reactions of FG, meanwhile providing a particular view to investigate the chemistry characteristics of 2D materials from a radical mechanism.

12.
Phys Chem Chem Phys ; 18(26): 17495-505, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27302862

RESUMO

The attachment of fluorine to graphene is a facile means to activate the carbon bonds for subsequent covalent bonding to other molecules for the preparation of desired graphene derivatives. Therefore, an insight into the chemical reactivity of fluorinated graphene (FG) is very essential to enable precise control of the composition and structure of the final products. In this study, FG has been treated with various mass amounts of poly(oxypropylene)diamine (PEA) ranging from starvation to saturation to explore the dependence of a substitution reaction of diamines on the nature and location (attached onto the basal planes or along defects or edges) of C-F bonds. X-ray photoelectron spectroscopy directly tracked the atomic percentage of fluorine present and the carbon 1s bonding state, showing that the grafting ratio of diamines gradually increases with increased diamine mass ratio. The varying of the types and orientation of C-F bonds characterized by polarized attenuated total reflectance Fourier transform infrared spectroscopy indicates that "covalent" C-F bonds are more sensitive to the substitution reaction of diamines than ''semi-ionic'' C-F bonds, and the C-F bonds attached onto basal planes more preferably participate in the functionalization reaction of diamines than that of C-F bonded on non-coplanar regions (edges or defects). The one-dimensional expansion along the graphene c-axis shown by wide angle X-ray diffraction provides further evidence on the preferred functionalization reaction of C-F attached on the basal planes, resulting in a change of the average intersheet distance by various magnitudes.

13.
Chem Sci ; 15(8): 2857-2866, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38404369

RESUMO

The synthesis of multivariate metal-organic frameworks (MOFs) is a well-known method for increasing the complexity of porous frameworks. In these materials, the structural differences of the ligands used in the synthesis are sufficiently subtle that they can each occupy the same site in the framework. However, multivariate or ligand scrambling approaches are rarely used in the synthesis of porous metal-organic polyhedra (MOPs) - the molecular equivalent of MOFs - despite the potential to retain a unique intrinsic pore from the individual cage while varying the extrinsic porosity of the material. Herein we directly synthesise scrambled cages across two families of lantern-type MOPs and find contrasting effects on their gas sorption properties. In one family, the scrambling approach sees a gradual increase in the BET surface area with the maximum and minimum uptakes associated with the two pure homoleptic cages. In the other, the scrambled materials display improved surface areas with respect to both of the original, homoleptic cages. Through analysis of the gas sorption isotherms, we attribute this effect to the balance of micro- and mesoporosity within the materials, which varies as a result of the scrambling approach. The gas uptake of the materials presented here underscores the tunability of cages that springs from their combination of intrinsic, extrinsic, micro- and meso-porosities.

14.
Nanomicro Lett ; 16(1): 228, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935160

RESUMO

Ammonia (NH3) is a carbon-free, hydrogen-rich chemical related to global food safety, clean energy, and environmental protection. As an essential technology for meeting the requirements raised by such issues, NH3 capture has been intensively explored by researchers in both fundamental and applied fields. The four typical methods used are (1) solvent absorption by ionic liquids and their derivatives, (2) adsorption by porous solids, (3) ab-adsorption by porous liquids, and (4) membrane separation. Rooted in the development of advanced materials for NH3 capture, we conducted a coherent review of the design of different materials, mainly in the past 5 years, their interactions with NH3 molecules and construction of transport pathways, as well as the structure-property relationship, with specific examples discussed. Finally, the challenges in current research and future worthwhile directions for NH3 capture materials are proposed.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35544704

RESUMO

The linkage of metal-organic polyhedra (MOPs) to synthesize porous soft materials is one of the promising strategies to combine processability with permanent porosity. Compared to the defined internal cavity of MOPs, it is still difficult to control the extrinsic porosities generated between crosslinked MOPs because of their random arrangements in the networks. Herein, we report a method to form linked MOP gels with controllable extrinsic porosities by introducing negative charges on the surface of MOPs that facilitates electrostatic repulsion between them. A hydrophilic rhodium-based cuboctahedral MOP (OHRhMOP) with 24 hydroxyl groups on its outer periphery can be controllably deprotonated to impart the MOP with tunable electrostatic repulsion in solution. This electrostatic repulsion between MOPs stabilizes the kinetically trapped state, in which an MOP is coordinated with various bisimidazole linkers in a monodentate fashion at a controllable linker/MOP ratio. Heating of the kinetically trapped molecules leads to the formation of gels with similar colloidal networks but different extrinsic porosities. This strategy allows us to design the molecular-level networks and the resulting porosities even in the amorphous state.

16.
Chem Asian J ; 16(9): 1092-1100, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33660942

RESUMO

Introduction of porosity into supramolecular gels endows soft materials with functionalities for molecular encapsulation, release, separation and conversion. Metal-organic polyhedra (MOPs), discrete coordination cages containing an internal cavity, have recently been employed as building blocks to construct polymeric gel networks with potential porosity. However, most of the materials can only be synthesized in organic solvents, and the examples of porous, MOP-based hydrogels are scarce. Here, we demonstrate the fabrication of porous hydrogels based on [Rh2 (OH-bdc)2 ]12 , a rhodium-based MOP containing hydroxyl groups on its periphery (OH-bdc=5-hydroxy-1,3-benzenedicarboxylate). By simply deprotonating [Rh2 (OH-bdc)2 ]12 with the base NaOH, the supramolecular polymerization between MOPs and organic linkers can be induced in the aqueous solution, leading to the kinetically controllable formation of hydrogels with hierarchical colloidal networks. When heating the deprotonated MOP, Nax [Rh24 (O-bdc)x (OH-bdc)24-x ], to induce gelation, the MOP was found to partially decompose, affecting the mechanical property of the resulting gels. By applying a post-synthetic deprotonation strategy, we show that the deprotonation degree of the MOP can be altered after the gel formation without serious decomposition of the MOPs. Gas sorption measurements confirmed the permanent porosity of the corresponding aerogels obtained from these MOP-based hydrogels, showing potentials for applications in gas sorption and catalysis.

17.
Chem Sci ; 12(38): 12556-12563, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34703541

RESUMO

Assembly of permanently porous metal-organic polyhedra/cages (MOPs) with bifunctional linkers leads to soft supramolecular networks featuring both porosity and processability. However, the amorphous nature of such soft materials complicates their characterization and thus limits rational structural control. Here we demonstrate that aging is an effective strategy to control the hierarchical network of supramolecular gels, which are assembled from organic ligands as linkers and MOPs as junctions. Normally, the initial gel formation by rapid gelation leads to a kinetically trapped structure with low controllability. Through a controlled post-synthetic aging process, we show that it is possible to tune the network of the linked MOP gel over multiple length scales. This process allows control on the molecular-scale rearrangement of interlinking MOPs, mesoscale fusion of colloidal particles and macroscale densification of the whole colloidal network. In this work we elucidate the relationships between the gel properties, such as porosity and rheology, and their hierarchical structures, which suggest that porosity measurement of the dried gels can be used as a powerful tool to characterize the microscale structural transition of their corresponding gels. This aging strategy can be applied in other supramolecular polymer systems particularly containing kinetically controlled structures and shows an opportunity to engineer the structure and the permanent porosity of amorphous materials for further applications.

18.
Dalton Trans ; 50(38): 13236-13245, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34485999

RESUMO

Two-dimensional (2D) π-conjugated conductive metal-organic frameworks (cMOFs, 2DπcMOF) with modulated channel sizes and a broad conductivity range have been reported in the last decade. In contrast, the corresponding comparative studies on their effects on chemiresistive sensing performances, which measure the resistive response toward external chemical stimuli, have not yet been reported. In this work, we sought to explore the structure-performance relationships of honeycomb-like 2D π-conjugated cMOF chemiresistive gas sensors with channel sizes less than 2 nm (the mass transport issue) and broad conductivity in the range from ∼10-8 S cm-1 to 1 S cm-1 (the charge transport issue). As a result, we found that the cMOF with a lower conductivity facilitates the much more sensitive response toward the charge transfer of the adsorbed gases (relative increases in resistance: R = 63.5% toward 100 ppm of NH3 for the as prepared Cu-THQ sensor with the conductivity of ∼10-8 S cm-1). Interestingly, the cMOF with a medium channel size (Cu-THHP-THQ) exhibited the fastest response speed in sensing, although it contains H2en2+ as neutralizing counterions in the channels. From the evaluation of the pore size distribution, it is found that the overall porosity (meso- & micro-pores) of cMOFs, rather than the pore size of the honeycomb structure, would determine their sensing speed. When comparing the performance of two different morphologies of nanorods (NRs) and nanosheets (NSs), NRs showed a slower response and extended recovery time, which can be ascribed to the slower gas diffusion in the more extended 1D channel. Altogether, our results demonstrate the first systematic studies on the effect of various structural parameters on the chemiresistive sensor performance of cMOFs.

19.
Chem Sci ; 12(1): 18-33, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34163581

RESUMO

In nature and synthetic materials, asymmetry is a useful tool to create complex and functional systems constructed from a limited number of building blocks. Reticular chemistry has allowed the synthesis of a wide range of discrete and extended structures, from which modularity permits the controlled assembly of their constituents to generate asymmetric configurations of pores or architectures. In this perspective, we present the different strategies to impart directional asymmetry over nano/meso/macroscopic length scales in porous materials and the resulting novel properties and applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA