Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cytotherapy ; 26(3): 299-310, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38159090

RESUMO

BACKGROUND AIMS: Chronic allograft vasculopathy (CAV) remains a predominant contributor to late allograft failure after organ transplantation. Several factors have already been shown to facilitate the progression of CAV, and there is still an urgent need for effective and specific therapeutic approaches to inhibit CAV. Human mesenchymal-like endometrial regenerative cells (ERCs) are free from the deficiencies of traditional invasive acquisition methods and possess many advantages. Nevertheless, the exact immunomodulation mechanism of ERCs remains to be elucidated. METHODS: C57BL/6 (B6) mouse recipients receiving BALB/c mouse donor abdominal aorta transplantation were treated with ERCs, negative control (NC)-ERCs and interleukin (IL)-37-/-ERCs (ERCs with IL-37 ablation), respectively. Pathologic lesions and inflammatory cell infiltration in the grafts, splenic immune cell populations, circulating donor-specific antibody levels and cytokine profiles were analyzed on postoperative day (POD) 40. The proliferative capacities of Th1, Th17 and Treg subpopulations were assessed in vitro. RESULTS: Allografts from untreated recipients developed typical pathology features of CAV, namely endothelial thickening, on POD 40. Compared with untreated and IL-37-/-ERC-treated groups, IL-37-secreting ERCs (ERCs and NC-ERCs) significantly reduced vascular stenosis, the intimal hyperplasia and collagen deposition. IL-37-secreting ERCs significantly inhibited the proliferation of CD4+T cells, reduced the proportions of Th1 and Th17 cells, but increased the proportion of Tregs in vitro. Furthermore, in vitro results also showed that IL-37-secreting ERCs significantly inhibited Th1 and Th17 cell responses, abolished B-cell activation, diminished donor-specific antibody production and increased Treg proportions. Notably, IL-37-secreting ERCs remarkably downregulated the levels of pro-inflammatory cytokines (interferon-γ, tumor necrosis factor-α, IL-1ß, IL-6 and IL-17A) and increased IL-10 levels in transplant recipients. CONCLUSIONS: The knockdown of IL-37 dramatically abrogates the therapeutic ability of ERCs for CAV. Thus, this study highlights that IL-37 is indispensable for ERC-mediated immunomodulation for CAV and improves the long-term allograft acceptance.


Assuntos
Transplante de Coração , Animais , Humanos , Camundongos , Aloenxertos , Imunoterapia , Interleucinas , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
2.
J Org Chem ; 88(9): 5483-5496, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37043684

RESUMO

Density functional theory calculations were applied to predict the pathways of gold(I)-catalyzed cycloisomerization of the indole substrates with 1,6-enynes, which were consistent with the ensuing experimental results. The substitution-controlled synthesis led to the formation of 1H-pyrido[4,3-b]indole and spiro[indoline-3,3'-pyridine] derivatives in a tunable way. The reactions had good functional group tolerances, and a possible mechanism was proposed based on the computational and experimental results.

3.
Nanotechnology ; 34(48)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37595571

RESUMO

Functionalization of MoS2was achieved by treatment in a strongly reducing sodium naphthalene solution. Dodecyl was grafted onto MoS2nanosheets using alkyl sulphates as electrophiles to obtain dodecylated MoS2without affecting the MoS2crystalline structure. Superior electrocatalytic properties are obtained for dodecylated MoS2. The polarisation curve of this nanomaterial remained constant even after 1000 consecutive cycles. This route provides a new pathway for covalent functionalization of MoS2and might find a variety of applications, such as electrocatalysts.

4.
Water Sci Technol ; 88(9): 2332-2343, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37966186

RESUMO

Hydroxyapatite (HAP) is a material renowned for its exceptional capabilities in adsorbing and exchanging heavy metal ions, making it a widely employed substance within the environmental domain. This study aims to present a novel material, namely copper-HAP (Cu-HAP), which was synthesized via an ion exchange method. The resulting material underwent comprehensive characterization using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and Brunauer-Emmett-Teller (BET) analysis. Subsequently, based on the principle of the Fenton-like oxidation reaction, the material was used for the degradation of phenol. The outcomes of the investigation revealed that the optimal preparation conditions for the catalyst were achieved at a temperature of 40 °C, a pH value of 5, and a relative dosage of Cu-HAP at 100 mg/g. Under the reaction conditions of a catalyst dosage of 2 g/L, a 30% hydrogen peroxide concentration of 30 mM, a phenol concentration of 20 mg/L, a pH value of 6, a temperature of 40 °C, and the degradation rate of phenol impressively reached 98.12%. Furthermore, the degradation rate remained at 42.31% even after five consecutive cycles, indicating the promising potential of Cu-HAP in the treatment of recalcitrant organic compounds within this field.


Assuntos
Cobre , Fenol , Fenol/química , Cobre/química , Troca Iônica , Durapatita , Fenóis , Catálise
5.
Ecotoxicol Environ Saf ; 234: 113366, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35272195

RESUMO

Immobilization of laccase helps protect the laccase and realizes repeated use. However, excessive encapsulation protection will also limit the release of laccase activity. This work introduces an effective one-pot method encapsulating laccase in the porous material of metal organic framework (MOF) containing specific metal ions, which provided a new way to solve the problem of limited laccase activity. The immobilization process was mathematically modeled. The morphological and encapsulated properties of the prepared materials were confirmed by the characterization results of SEM, FTIR, XRD, TGA, XPS and CLSM. The results showed that laccase was successfully encapsulated, and the Cu (PABA) with Cu2+ as the central structure promoted the laccase activity, the activity of immobilized laccase increased by 1.7 times. The prepared laccase@Cu (PABA) (Lac@Cu (PABA)) showed enhanced stability to extreme pH, high temperature and storage time. More importantly, the Lac@Cu (PABA) exhibited superior reusability, maintaining 70% removal rate of Direct Red 31 (DR31) even after 10 cycles. The dye removal rate of immobilized laccase reached 92% in 6 h under optimal conditions. This research improved the stability of laccase while releasing the activity of laccase, which not only broadened the applicable environment of laccase, but also increased the rate of degradation, and provided a new idea for the clean and efficient treatment of water pollution in textile industry.

6.
Bioprocess Biosyst Eng ; 45(10): 1739-1751, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36121508

RESUMO

In this paper, sodium alginate-sodium carboxymethyl cellulose (SA-CMC) composite material was used as a carrier, and sodium alginate-embedded laccase (Lac@SC) was prepared by traditional embedding method. After that, ethylene glycol diglycidyl ether (EGDE) and glutaraldehyde (GLU) were used as cross-linking agents, two different cross-linking-embedded co-immobilized laccases (Lac@SCG and Lac@SCE) were innovatively prepared, respectively, and then these immobilized laccases were characterized by SEM, FT-IR and XRD, and the stability of the three immobilized laccases was explored. In addition, the effects of different factors on the removal of 2,4-DCP by immobilized laccase were studied, and the degradation kinetic models of three immobilized laccases on 2,4-DCP were summarized, the possible degradation pathways of pollutants were also given. Experimental results showed that compared to free laccase, the pH stability, thermal stability and storage stability of immobilized laccase were greatly improved. These immobilized laccases could maintain high activity at pH3~6, 45~55 °C. Lac@SCG had the best storage stability. After 30 days of storage, the relative enzyme activity was still more than 40%. Lac@SC had good reusability, the relative enzyme activity was still more than 50% after 5 uses. In the degradation of 2,4-DCP, all three immobilized laccases showed good performance, when Lac@SCE was at pH5, 35 °C, 25 h, the removal rate of 2,4-DCP could reach 95.2%; When at 45 °C, Lac@SC had the highest degradation rate which reach to 94%; At 45 °C, the degradation rate of Lac@SCG reached 83.2%.


Assuntos
Poluentes Ambientais , Lacase , Alginatos , Carboximetilcelulose Sódica , Poluentes Ambientais/metabolismo , Enzimas Imobilizadas/química , Glutaral , Lacase/química , Sódio , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Water Sci Technol ; 86(1): 80-94, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35838284

RESUMO

Cu(PABA) is a Cu-based MOF material assembled from Cu2+ and the organic ligand p-aminobenzoic acid (PABA). Cu (PABA) was synthesized by a solvothermal method, characterized and applied to the adsorption of direct red 31 dye (DR-31). The effects of pH, DR-31 concentration and temperature on the adsorption performance of Cu(PABA) were investigated. The adsorption kinetics were analyzed by pseudo-first-order, pseudo-second-order and intra-particle diffusion models, and the adsorption equilibrium data was fitted by Langmuir and Freundlich isotherm models. The pseudo-first-order kinetics and Langmuir model satisfactorily described the adsorption kinetics and adsorption equilibrium, respectively. The maximum adsorption capacity of Cu(PABA) for DR-31 dye at room temperature was 1,244.8 mg/g, as calculated using the Langmuir adsorption isotherm model. By response surface methodology (RSM), the optimal adsorption was found at pH value of 10.9, DR-31 dye concentration of 216.6 mg/L, and temperature of 27 °C, and the removal rate was as high as 99.4%. Therefore, Cu(PABA) can be used as an efficient adsorbent for removing DR-31 dye from aqueous solution.


Assuntos
Ácido 4-Aminobenzoico , Ácidos , Adsorção , Compostos Azo , Concentração de Íons de Hidrogênio , Cinética , Soluções
8.
Water Sci Technol ; 86(10): 2701-2717, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36450681

RESUMO

A carbon derivative with Fe-Cu bimetallic organic framework (Fe-Cu-MOF@C) was prepared by microwave synthesis and pyrolysis. Using potassium persulfate (PS) as oxidant and 2,4-dichlorophenol (2,4-DCP) as target pollutant, the optimal preparation conditions of Fe-Cu-MOF@C were studied. The factors affecting the synthesis of Fe-Cu-MOF include microwave power, microwave time, microwave temperature, the molar ratio of metal ions to organic ligands, the molar ratio of iron and copper, etc. In addition, the influence of pyrolysis temperature on the performance of Fe-Cu-MOF@C cannot be ignored. The results show that Fe-Cu-MOF@C has the best catalytic performance when the microwave time is 30 min, the microwave power is 600 W, the microwave temperature is 150 °C, the molar ratio of (Fe2+ + Cu2+)/H2BDC is 10:3, the molar ratio of Fe2+/Cu2+ is 10:1, and the pyrolysis temperature is 700 °C. After 90 min of reaction, 2,4-DCP was completely removed. Repeatable experiments show that Fe-Cu-MOF@C has good stability and its service life can be restored by heat treatment. In this study, a heterogeneous catalyst with strong catalytic capacity, high stability and easy recovery was prepared by a simple and efficient process, which is conducive to the development of advanced oxidation technology and the progress of water environmental protection.


Assuntos
Micro-Ondas , Pirólise , Catálise , Carbono , Cobre
9.
BMC Biotechnol ; 21(1): 47, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34353307

RESUMO

BACKGROUND: Although laccase has a good catalytic oxidation ability, free laccase shows a poor stability. Enzyme immobilization is a common method to improve enzyme stability and endow the enzyme with reusability. Adsorption is the simplest and common method. Modified biochar has attracted great attention due to its excellent performance. RESULTS: In this paper, cetyltrimethylammonium bromide (CTAB)-KOH modified biochar (CKMB) was used to immobilize laccase by adsorption method (laccase@CKMB). Based on the results of the single-factor experiments, the optimal loading conditions of laccase@CKMB were studied with the assistance of Design-Expert 12 and response surface methods. The predicted optimal experimental conditions were laccase dosage 1.78 mg/mL, pH 3.1 and 312 K. Under these conditions, the activity recovery of laccase@CKMB was the highest, reaching 61.78%. Then, the CKMB and laccase@CKMB were characterized by TGA, FT-IR, XRD, BET and SEM, and the results showed that laccase could be well immobilized on CKMB, the maximum enzyme loading could reach 57.5 mg/g. Compared to free laccase, the storage and pH stability of laccase@CKMB was improved greatly. The laccase@CKMB retained about 40% of relative activity (4 °C, 30 days) and more than 50% of relative activity at pH 2.0-6.0. In addition, the laccase@CKMB indicated the reusability up to 6 reaction cycles while retaining 45.1% of relative activity. Moreover, the thermal deactivation kinetic studies of laccase@CKMB showed a lower k value (0.00275 min- 1) and higher t1/2 values (252.0 min) than the k value (0.00573 min- 1) and t1/2 values (121.0 min) of free laccase. CONCLUSIONS: We explored scientific and reasonable immobilization conditions of laccase@CKMB, and the laccase@CKMB possessed relatively better stabilities, which gave the immobilization of laccase on this cheap and easily available carrier material the possibility of industrial applications.


Assuntos
Carvão Vegetal/química , Proteínas Fúngicas/química , Lacase/química , Polyporaceae/enzimologia , Adsorção , Cetrimônio/química , Estabilidade Enzimática , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio , Hidróxidos/química , Cinética , Polyporaceae/química , Compostos de Potássio/química , Temperatura
10.
Soft Matter ; 16(15): 3686-3694, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32227062

RESUMO

The development of reversible networks in elastomers provided unique inspiration for the design of advanced polymers with excellent properties. In this paper, we adopted an anionic melting method to introduce carboxylate groups into 1,2-polybutadiene (1,2-PB), using maleic anhydride as a modifier, and sodium hydride (NaH), calcium hydride (CaH2), and lithium aluminum hydride (LiAlH4) as metallization reagents. Na-Based, Ca-based, and Li/Al-based ionic bond networks were constructed in the covalently crosslinked 1,2-PB. The effects of the electronegativity and valence of the metal ions on the strength and reversible temperature of the ionic network were studied. Payne effect was shown by rheological tests, demonstrating the interactions between the ionic networks and rubber chains. The reforming temperature for these ionic networks was studied by stress-relaxation analysis, and shape memory experiments were performed based on these temperatures. This concept provides novel inspiration for the design of high-performance and temperature-adaptive elastomers.

11.
Mikrochim Acta ; 187(12): 657, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33196955

RESUMO

Graphdiyne (GDY) as an emerging carbon nanomaterial has attracted increasing attention because of its uniformly distributed pores, highly π-conjugated, and tunable electronic properties. These excellent characteristics have been widely explored in the fields of energy storage and catalysts, yet there is no report on the development of sensors based on the outstanding optical property of GDY. In this paper, a new sensing mechanism is reported built upon the synergistic effect between inner filter effect and photoinduced electron transfer. We constructed a novel nanosensor based upon the newly-synthesized nanomaterial and demonstrated a sensitive and selective detection for both Fe3+ ion and ascorbic acid, enabling the measurements in real clinical samples. For the first time fluorescent graphdiyne oxide quantum dots (GDYO-QDs) were prepared using a facile ultrasonic protocol and they were characterized with a range of techniques, showing a strong blue-green emission with 14.6% quantum yield. The emission is quenched efficiently by Fe3+ and recovered by ascorbic acid (AA). We have fabricated an off/on fluorescent nanosensors based on this unique property. The nanosensors are able to detect Fe3+ as low as 95 nmol L-1 with a promising dynamic range from 0.25 to 200 µmol L-1. The LOD of AA was 2.5 µmol L-1, with range of 10-500 µmol L-1. It showed a promising capability to detect Fe3+ and AA in serum samples. Graphical abstract.


Assuntos
Ácido Ascórbico/análise , Compostos Férricos/análise , Grafite/química , Dispositivos Ópticos , Pontos Quânticos/química , Ácido Ascórbico/sangue , Compostos Férricos/sangue , Humanos , Limite de Detecção , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Análise Espectral/métodos
12.
Water Sci Technol ; 82(8): 1535-1546, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33107848

RESUMO

In this study, rice straw was used to prepare biomass carbon, which was modified with KOH and cetyltrimethylammonium bromide (CTAB) to obtain modified biomass carbon (MBC). The biomass carbon (BC) before and after modification was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR), and the surface morphology, crystal structure and surface group characteristic BC were explored. The specific surface area and micropores of the modified biomass carbon increased significantly, the crystallinity was higher, and the pore structure was more clearly found. The adsorption performance of MBC for 2,4-dichlorophenol (2,4-DCP) was investigated. The results showed that under the best adsorption conditions ((2,4-DCP concentration (200 mg/L), MBC dosage (50 mg), pH (5.5), and loading time (60 min), temperature (room temperature)), the removal rate of 2,4-DCP was up to 42.5%, and adsorption capacity was 85.13 mg/g. The adsorption of 2,4-DCP on MBC materials was better explained by the pseudo-second-order kinetic model and the Langmuir adsorption isotherm model. It was believed that the adsorption of 2,4-DCP by MBC was the monolayer adsorption process on the uniform surface of MBC at high concentration, and there was no interaction between the 2,4-DCP and MBC adsorbate during this process.


Assuntos
Cetrimônio , Poluentes Químicos da Água , Adsorção , Biomassa , Carbono , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
13.
J Environ Sci Health B ; 55(8): 704-711, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32500809

RESUMO

In order to solve the problem of heavy metal-organic compound soil pollution, in this paper, we developed a highly efficient electro kinetic-laccase combined remediation (EKLCR) system. The results showed that the EKLCR system had an obvious migration effect on heavy metals (copper and cadmium) and good migration-degradation effect on phenanthrene. The migration rates of copper and cadmium were 48.3% and 40.3%, respectively. Especially, with the presence of laccase, the removal rate of phenanthrene on Cu2+-contaminated soil was higher than that of Cd2+-contaminated soil due to the significant effect of heavy metals on the enzymatic activity of laccase. The average migration-degradation rate of phenanthrene by EKLCR system was 45.4%. Finally, gas chromatography-mass spectrometry (GC/MS) was used to analyze the degradation intermediates of phenanthrene in the soil, which included 9,10-Phenanthrenequinone, phthalic acid, and 2,2-Biphenyldicarboxylic Acid. In addition, we give the possible degradation pathways of phenanthrene, 2,2-Biphenyldicarboxylic Acid is further degraded to produce phthalic acid. The products of the phthalic acid metabolic pathway are protocatechuic acid, pyruvic acid or succinic acid, the final products of these organic acids are carbon dioxide and water.


Assuntos
Recuperação e Remediação Ambiental/métodos , Metais Pesados/análise , Fenantrenos/análise , Poluentes do Solo/análise , Biodegradação Ambiental , Desenho de Equipamento , Cromatografia Gasosa-Espectrometria de Massas , Cinética , Lacase/metabolismo , Metais Pesados/química , Fenantrenos/química , Fenantrenos/metabolismo , Solo/química , Poluentes do Solo/química
14.
Nanotechnology ; 30(50): 505701, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31480032

RESUMO

Currently, bio-simulate drug delivery systems are highly considered for efficient targeting of tumors. Nevertheless, there are some potential problems such as intelligent release efficiency, subsequently, influence cell toxicity and blood circulation stability. A novel type of stimuli-responsive nanoparticle was developed in accordance with the specific tumor microenvironment to deliver gambogic acid (GA). Herein, we successfully connected GA with mPEG via two different sensitive linkages, valine-citrulline (VC) and cystamine. The structure was characterized by ESI-MS, 1H NMR, FT-IR or MALDI-TOF-MS. The mPEG-VC-SS-GA-NPs (PVSG-NPs) were rapidly prepared. The properties of nanoparticles, including solubility, particle size, morphology, and sensitive drug release performance, were investigated. Compared to single sensitive conjugate (mPEG-SS-GA-NPs, PSG-NPs), PVSG-NPs demonstrated greater solubility and higher sensitive release profile. Cytotoxicity test indicated that PVSG-NPs had apparent cytotoxicity on HepG2 cells and reduced cytotoxicity on normal cells. Additionally, PVSG-NPs mainly kill HepG2 cells by inducing early and late apoptosis and restraining the G0/G1 phase proliferation. Albumin adsorption test revealed that the PVSG-NPs had little albumin combination, consequently, enhancing their circulation constancy. In summary, our findings suggested the novel PVSG-NPs capable of being used for tumor targeting and further practical applications.

15.
Zhongguo Zhong Yao Za Zhi ; 44(11): 2379-2389, 2019 Jun.
Artigo em Zh | MEDLINE | ID: mdl-31359667

RESUMO

To evaluate the efficiency and safety between Wenxin Granule and antiarrhythmic drugs in the treatment of atrial fibrillation(AF). A total of 8 major electronic databases(CNKI, WanFang, VIP, CBM, Cochrane Library, Web of Science, PubMed, EMbase) were retrieved since the establishment of the database to January 10, 2019. Two reviewers extracted data, and assessed the methodological quality of the included studies. The Meta-analysis was made by RevMan 5.3 software. Finally, 42 studies involving 4 657 patients were included. The results of Meta-analysis showed that compared with antiarrhythmic drug, the combined administration with Wenxin Granule and antiarrhythmic drug had a better clinical efficiency(OR=3.37, 95%CI[2.69,4.22],I~2=0%,P<0.000 01)and efficacy on cardioversion(OR=2.32,95%CI[1.67,3.22],I~2=0%,P<0.000 01), with reduction in P_d(MD=-5.48,95%CI [-7.32,-3.64],I~2=0%,P<0.000 01)and P_(max)(MD=-9.91,95%CI[-12.86,-6.95],I~2=0%,P<0.000 01). The comparison between the combined application with Wenxin Granule and the single application of amiodarone showed a clinical efficiency(OR=2.89,95%CI[1.96,4.26],I~2=44%,P<0.000 01),and efficacy on sinus rhythm maintenance(OR=2.58,95%CI[1.82,3.66],I~2=3%,P<0.000 01). The comparison between the combined application with Wenxin Granule and the single application of amiodarone showed a clinical efficiency(OR=0.88,95%CI[0.53,1.46],I~2=0%,P=0.63). The combined treatment with Wenxin Granule has a better clinical efficiency in AF better than amiodarone, with no evidence for more benefits from the single administration with Wenxin Granules.


Assuntos
Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Terapia Combinada , Cardioversão Elétrica , Humanos
16.
Artigo em Inglês | MEDLINE | ID: mdl-39248063

RESUMO

P90 ribosomal S6 kinase 2 (RSK2) is an important member of the RSK family, functioning as a kinase enzyme that targets serine and threonine residues and contributes to regulating cell growth. RSK2 comprises two major functional domains: the N-terminal kinase domain (NTKD) and the C-terminal kinase domain (CTKD). RSK2 is situated at the lower end of the Mitogen-activated protein kinases (MAPK) signaling pathway and is phosphorylated by the direct regulation of Extracellular signal-regulating kinase (ERK). RSK2 has been found to play a pivotal role in regulating cell proliferation, apoptosis, metastasis, and invasion in various cancer cells, including breast cancer and melanoma. Consequently, RSK2 has emerged as a potential target for the development of anti-cancer drugs. Presently, several inhibitors are undergoing clinical trials, such as SL0101. Current inhibitors of RSK2 mainly bind to its NTK or CTK domains and inhibit their activity. Natural products serve as an important resource for drug development and screening and with the potential to identify RSK2 inhibitors. This article discusses how RSK2 influences tumor cell proliferation, prevents apoptosis, arrests the cell cycle process, and promotes cancer metastasis through its regulation of downstream pathways or interaction with other biological molecules. Additionally, the paper also covers recent research progress on RSK2 inhibitors and the mechanisms of action of natural RSK2 inhibitors on tumors. This review emphasizes the significance of RSK2 as a potential therapeutic target in cancer and offers a theoretical basis for the clinical application of RSK2 inhibitors.

17.
Tissue Cell ; 87: 102343, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442546

RESUMO

The hyperpermeability of intestinal epithelium is a key contributor to the occurrence and development of systemic inflammation. Although D-beta-hydroxybutyrate (BHB) exhibits various protective effects, whether it affects the permeability of intestinal epithelium in systemic inflammation has not been clarified. In this study, we investigated the effects of BHB on the intestinal epithelial permeability, the epithelial marker E-cadherin and the tight junction protein Claudin-1 in colon in the lipopolysaccharide (LPS)-induced systemic inflammation mouse model. Intraperitoneal injection of LPS was used to induce systemic inflammation and BHB was given by oral administration. The permeability of intestinal epithelium, the morphological changes of colonic epithelium, the distribution and generation of colon E-cadherin, and the Claudin-1 generation and its epithelial distribution in colon were detected. The results confirmed the intestinal epithelial hyperpermeability and inflammatory changes in colonic epithelium, with disturbed E-cadherin distribution in LPS-treated mice. Besides, colon Claudin-1 generation was decreased and its epithelial distribution in colon was weakened in LPS-treated mice. However, BHB treatments alleviated the LPS-induced hyperpermeability of intestinal epithelium, attenuated the colonic epithelial morphological changes and promoted orderly distribution of E-cadherin in colon. Furthermore, BHB up-regulated colon Claudin-1 generation and promoted its colonic epithelial distribution and content in LPS-treated mice. In conclusion, BHB may alleviate the hyperpermeability of intestinal epithelium via up-regulation of Claudin-1 in colon in LPS-treated mice.


Assuntos
Inflamação , Lipopolissacarídeos , Camundongos , Animais , Claudina-1 , Lipopolissacarídeos/toxicidade , Ácido 3-Hidroxibutírico/farmacologia , Caderinas/metabolismo
18.
Environ Technol ; : 1-12, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258955

RESUMO

In order to promote the high-value utilization of waste phosphogypsum (PG), hydroxyapatite was directly synthesized from PG by acid precipitation-hydrothermal method (PGHAP), which was used for the adsorption of bovine serum albumin (BSA) and lysozyme (LYS). The synthesized PGHAP was characterized by XRD, SEM, FTIR and BET, and the effects of various factors on protein adsorption capacity were studied. The results showed that PGHAP exhibits a clear needle-like morphology, high crystallinity, and an average size of about 200 nm. The pH had the greatest effect on the adsorption of protein, and the highest adsorption capacity was obtained at pH 4.0. In addition, the adsorption mechanism of protein on PGHAP was explored by adsorption kinetics and adsorption isotherm. The adsorption of protein on PGHAP conforms to the Intra-particle diffusion model kinetic model, the maximum adsorption capacity of protein on PGHAP can reach 31 mg/g, which is comparable to other adsorbents in this field. In addition, the adsorption behaviour of PGHAP on protein is more appropriately described by Langmuir isotherm model, which indicates that the binding site with uniform energy on the surface of PGHAP realizes the monolayer adsorption of protein. The main adsorption mechanisms are ion exchange, co-precipitation, complexation reaction and so on. Therefore, the needle-like PGHAP synthesized from waste PG is a protein adsorbent with industrial application potential.

19.
Mol Med Rep ; 30(1)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38785151

RESUMO

Periodontal disease is a common infectious disease that can lead to the loss of teeth. Hower how to effectively suppress the inflammation with medication is unclear. The aim of the present study was to investigate the anti­inflammatory effect of Oroxylin A in periodontitis and its potential role through heme oxygenase­1 (HO­1). Primary rat gingival fibroblasts (RGFs) were cultured using the tissue block method and identified by immunofluorescence. Following lipopolysaccharide (LPS) stimulation of RGFs, Oroxylin A was administered at 50, 100, 200 or 400 µg/ml. Reverse transcription­quantitative PCR was used to assess mRNA expression of cyclooxygenase (COX)­2, TNF­α, RANKL and osteoprotegerin (OPG). Western blotting was used to detect protein expression levels of COX ­2, TNF­α, RANKL and OPG. Following HO­1 knockdown, the same treatment was performed. The expression of COX­2 in rat gingival tissue was observed by immunohistochemistry. One­way analysis of variance and Student's t test were used for statistical analysis. Oroxylin A downregulated mRNA expression of COX­2, TNF­α, RANKL and OPG in LPS­induced RGFs. With increase of Oroxylin A dose, the expression of HO­1 was gradually upregulated. When HO­1 was knocked down, Oroxylin A did not downregulate the expression of COX­2, TNF­α, RANKL and OPG in LPS­induced RGFs. Immunohistochemical results showed that expression of COX­2 was downregulated by Oroxylin A, and the expression of TNF­α, RANKL and OPG were also downregulated. Oroxylin A decreased expression of inflammatory cytokines in LPS­induced RGFs and had a good inhibitory effect on periodontitis in rats.


Assuntos
Ciclo-Oxigenase 2 , Fibroblastos , Flavonoides , Periodontite , Ligante RANK , Animais , Ratos , Flavonoides/farmacologia , Periodontite/metabolismo , Periodontite/tratamento farmacológico , Periodontite/patologia , Ligante RANK/metabolismo , Ligante RANK/genética , Masculino , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Osteoprotegerina/metabolismo , Osteoprotegerina/genética , Lipopolissacarídeos , Gengiva/metabolismo , Gengiva/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Citocinas/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Células Cultivadas , Ratos Sprague-Dawley
20.
Chemosphere ; 350: 141143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38195015

RESUMO

Hybrid organic framework materials are a class of hierarchical porous crystalline materials that have emerged in recent years, composed of three types of porous crystal materials, namely metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs). The combination of various organic framework properties in hybrid organic frameworks generates synergistic effects, which has attracted widespread attention from researchers. The synthesis methods of hybrid organic frameworks are also an intriguing topic, enabling the formation of core-shell heterostructures through epitaxial growth, template conversion, medium growth, or direct combination. These hybrid organic framework materials have demonstrated remarkable performance in the application of photocatalytic wastewater purification and have developed various forms of applications. This article reviews the preparation principles and methods of various hybrid organic frameworks and provides a detailed overview of the research progress of photocatalytic water purification hybrid organic frameworks. Finally, the challenges and development prospects of hybrid organic framework synthesis and their application in water purification are briefly discussed.


Assuntos
Estruturas Metalorgânicas , Purificação da Água , Hidrogênio , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA