Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2318391121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38527207

RESUMO

The exploitation of novel wound healing methods with real-time infection sensing and high spatiotemporal precision is highly important for human health. Pt-based metal-organic cycles/cages (MOCs) have been employed as multifunctional antibacterial agents due to their superior Pt-related therapeutic efficiency, various functional subunits and specific geometries. However, how to rationally apply these nanoscale MOCs on the macroscale with controllable therapeutic output is still challenging. Here, a centimeter-scale Pt MOC film was constructed via multistage assembly and subsequently coated on a N,N'-dimethylated dipyridinium thiazolo[5,4-d]thiazole (MPT)-stained silk fabric to form a smart wound dressing for bacterial sensing and wound healing. The MPT on silk fabric could be used to monitor wound infection in real-time through the bacteria-mediated reduction of MPT to its radical form via a color change. The MPT radical also exhibited an excellent photothermal effect under 660 nm light irradiation, which could not only be applied for photothermal therapy but also induce the disassembly of the Pt MOC film suprastructure. The highly ordered Pt MOC film suprastructure exhibited high biosafety, while it also showed improved antibacterial efficiency after thermally induced disassembly. In vitro and in vivo studies revealed that the combination of the Pt MOC film and MPT-stained silk can provide real-time information on wound infection for timely treatment through noninvasive techniques. This study paves the way for bacterial sensing and wound healing with centimeter-scale metal-organic materials.


Assuntos
Platina , Infecção dos Ferimentos , Humanos , Platina/farmacologia , Cicatrização , Bandagens , Antibacterianos/farmacologia , Antibacterianos/química , Seda/química , Bactérias , Hidrogéis/farmacologia
2.
J Biol Chem ; 300(4): 106791, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403247

RESUMO

DNA modifications add another layer of complexity to the eukaryotic genome to regulate gene expression, playing critical roles as epigenetic marks. In eukaryotes, the study of DNA epigenetic modifications has been confined to 5mC and its derivatives for decades. However, rapid developing approaches have witnessed the expansion of DNA modification reservoirs during the past several years, including the identification of 6mA, 5gmC, 4mC, and 4acC in diverse organisms. However, whether these DNA modifications function as epigenetic marks requires careful consideration. In this review, we try to present a panorama of all the DNA epigenetic modifications in eukaryotes, emphasizing recent breakthroughs in the identification of novel DNA modifications. The characterization of their roles in transcriptional regulation as potential epigenetic marks is summarized. More importantly, the pathways for generating or eliminating these DNA modifications, as well as the proteins involved are comprehensively dissected. Furthermore, we briefly discuss the potential challenges and perspectives, which should be taken into account while investigating novel DNA modifications.


Assuntos
Metilação de DNA , Epigênese Genética , Eucariotos , Humanos , Eucariotos/genética , Eucariotos/metabolismo , Animais , DNA/metabolismo , DNA/genética , DNA/química
3.
Proc Natl Acad Sci U S A ; 119(32): e2201899119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914155

RESUMO

The cellular and molecular components required for the formation of premetastatic niche (PMN) to promote lung metastasis need to be further investigated. Lung epithelial cells have been reported to exhibit immunomodulatory roles in lung homeostasis and also to mediate immunosuppressive PMN formation in lung metastasis. Here, by single-cell sequencing, we identified a tumor-polarized subpopulation of alveolar type 2 (AT2) epithelial cells with increased expression of glutathione peroxidase 3 (GPX3) and high production of interleukin (IL)-10 in the PMN. IL-10-producing GPX3+ AT2 cells inhibited CD4+ T cell proliferation but enhanced regulatory T cell generation. Mechanistically, tumor exosome-inducing GPX3 expression is required for GPX3+ AT2 cells to preferentially produce IL-10 by stabilizing hypoxia-inducible factor 1 (HIF-1α) and promoting HIF-1α-induced IL-10 production. Accordingly, conditional knockout of GPX3 in AT2 cells suppressed lung metastasis in spontaneous metastatic models. Together, our findings reveal a role of tumor-polarized GPX3+ AT2 cells in promoting lung PMN formation, adding insights into immune evasion in lung metastasis and providing potential targets for the intervention of tumor metastasis.


Assuntos
Células Epiteliais Alveolares , Interleucina-10 , Neoplasias Pulmonares , Células Epiteliais Alveolares/citologia , Linfócitos T CD4-Positivos/citologia , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Pulmão/citologia , Pulmão/patologia , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Evasão Tumoral
4.
Nano Lett ; 24(8): 2661-2670, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38345313

RESUMO

Nanomaterial-assisted chemodynamic therapy (CDT) has received considerable attention in recent years. It outperforms other modalities by its distinctive reactive oxygen species (ROS) generation through a nonexogenous stimulant. However, CDT is limited by the insufficient content of endogenous hydrogen peroxide (H2O2). Herein, a biodegradable MnS@HA-DOX nanocluster (MnS@HA-DOX NC) was constructed by in situ biomineralization from hyaluronic acid, to enlarge the ROS cascade and boost Mn2+-based CDT. The acid-responsive NCs could quickly degrade after internalization into endo/lysosomes, releasing Mn2+, H2S gas, and anticancer drug doxorubicin (DOX). The Fenton-like reaction catalyzed by Mn2+ was amplified by both H2S and DOX, producing a mass of cytotoxic ·OH radicals. Through the combined action of gas therapy (GT), CDT, and chemotherapy, oxidative stress would be synergistically enhanced, inducing irreversible DNA damage and cell cycle arrest, eventually resulting in cancer cell apoptosis.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/farmacologia , Doxorrubicina/farmacologia , Apoptose , Biomineralização , Gases , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Nano Lett ; 24(15): 4649-4657, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572971

RESUMO

Deep-seated bacterial infections (DBIs) are stubborn and deeply penetrate tissues. Eliminating deep-seated bacteria and promoting tissue regeneration remain great challenges. Here, a novel radical-containing hydrogel (SFT-B Gel) cross-linked by a chaotropic effect was designed for the sensing of DBIs and near-infrared photothermal therapy (NIR-II PTT). A silk fibroin solution stained with 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tris(1-methylpyridin-1-ium) (TPT3+) was employed as the backbone, which could be cross-linked by a closo-dodecaborate cluster (B12H122-) through a chaotropic effect to form the SFT-B Gel. More interestingly, the SFT-B Gel exhibited the ability to sense DBIs, which could generate a TPT2+• radical with obvious color changes in the presence of bacteria. The radical-containing SFT-B Gel (SFT-B★ Gel) possessed strong NIR-II absorption and a remarkable photothermal effect, thus demonstrating excellent NIR-II PTT antibacterial activity for the treatment of DBIs. This work provides a new approach for the construction of intelligent hydrogels with unique properties using a chaotropic effect.


Assuntos
Fototerapia , Terapia Fototérmica , Hidrogéis/farmacologia
6.
Apoptosis ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886312

RESUMO

With global warming, extreme environmental heat is becoming a social issue of concern, which can cause adverse health results including heatstroke (HS). Severe heat stress is characterized by cell death of direct heat damage, excessive inflammatory responses, and coagulation disorders that can lead to multiple organ dysfunction (MODS) and even death. However, the significant pathophysiological mechanism and treatment of HS are still not fully clear. Various modes of cell death, including apoptosis, pyroptosis, ferroptosis, necroptosis and PANoptosis are involved in MODS induced by heatstroke. In this review, we summarized molecular mechanism, key transcriptional regulation as for HSF1, NRF2, NF-κB and PARP-1, and potential therapies of cell death resulting in CNS, liver, intestine, reproductive system and kidney injury induced by heat stress. Understanding the mechanism of cell death provides new targets to protect multi-organ function in HS.

7.
Small ; 20(8): e2304082, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37767608

RESUMO

Bioenergetic deficits are known to be significant contributors to neurodegenerative diseases. Nevertheless, identifying safe and effective means to address intracellular bioenergetic deficits remains a significant challenge. This work provides mechanistic insights into the energy metabolism-regulating function of colloidal Au nanocrystals, referred to as CNM-Au8, that are synthesized electrochemically in the absence of surface-capping organic ligands. When neurons are subjected to excitotoxic stressors or toxic peptides, treatment of neurons with CNM-Au8 results in dose-dependent neuronal survival and neurite network preservation across multiple neuronal subtypes. CNM-Au8 efficiently catalyzes the conversion of an energetic cofactor, nicotinamide adenine dinucleotide hydride (NADH), into its oxidized counterpart (NAD+ ), which promotes bioenergy production by regulating the intracellular level of adenosine triphosphate. Detailed kinetic measurements reveal that CNM-Au8-catalyzed NADH oxidation obeys Michaelis-Menten kinetics and exhibits pH-dependent kinetic profiles. Photoexcited charge carriers and photothermal effect, which result from optical excitations and decay of the plasmonic electron oscillations or the interband electronic transitions in CNM-Au8, are further harnessed as unique leverages to modulate reaction kinetics. As exemplified by this work, Au nanocrystals with deliberately tailored structures and surfactant-free clean surfaces hold great promise for developing next-generation therapeutic agents for neurodegenerative diseases.


Assuntos
NAD , Doenças Neurodegenerativas , Humanos , NAD/química , Ouro/química , Oxirredução
8.
Opt Lett ; 49(2): 210-213, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194530

RESUMO

The kinetics of optical switching due to the insulator-metal phase transition in a VO2 thin film is studied experimentally at different laser pulse repetition frequencies (PRFs) in the NIR range and compared with temperature kinetics obtained through the thermal conductance calculations. Two switching processes have been found with characteristic times <2 ms and <15 ms depending on the PRF; the former is explained by the accumulation of metallic domains remaining after a single-pulse phase transition, and the latter is referred to the heat accumulation in the film. Consequently, the dynamics of the microscopic domains is leading in the initiation of phase transition under pulse-periodic conditions compared to the macroscopic heat transfer. The reverse transition at the radiation turn-off depends on the PRF with a time coefficient of 17.5 µs/kHz and is determined by the metallic domains' decay in the film. The results are important for understanding the nature of the insulator-metal transition in thin films of VO2 as well as using them in all-optical switches of pulse-periodic laser radiation.

9.
Opt Lett ; 49(2): 298-301, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194552

RESUMO

The distinctive properties and facile integration of 2D materials hold the potential to offer promising avenues for the on-chip photonic devices, and the expeditious and nondestructive identification and localization of diverse fundamental building blocks become key prerequisites. Here, we present a methodology grounded in digital image processing and deep learning, which effectively achieves the detection and precise localization of four monolayer-thick triangular single crystals of transition metal dichalcogenides with the mean average precision above 90%, and the approach demonstrates robust recognition capabilities across varied imaging conditions encompassing both white light and monochromatic light. This stands poised to serve as a potent data-driven tool enhancing the characterizing efficiency and holds the potential to expedite research initiatives and applications founded on the utilization of 2D materials.

10.
Reprod Biol Endocrinol ; 22(1): 74, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918809

RESUMO

BACKGROUND: Erectile dysfunction (ED) is a common male sexual dysfunction, with an increasing incidence, and the current treatment is often ineffective. METHODS: Vascular endothelial growth factor (VEGFA) was used to treat bone marrow-derived mesenchymal stem cells (BM-MSCs), and their cell migration rates were determined by Transwell assays. The expression of the von Willebrand Factor (vWF)VE-cadherin, and endothelial nitric oxide synthase(eNOS) endothelial markers was determined by qRT‒PCR and Western blot analyses. The MALAT1-induced differentiation of BM-MCs to ECs via the CDC42/PAK1/paxillin pathway was explored by transfecting VEGFA-induced BM-MSC with si-MALAT1 and overexpressing CDC42 and PAK1. The binding capacity between CDC42, PAK1, and paxillin in VEGFA-treated and non-VEGFA-treated BM-MSCs was examined by protein immunoprecipitation. MiR-206 was overexpressed in VEGFA-induced BM-MSC, and the binding sites of MALAT1, miR-206, and CDC42 were identified using a luciferase assay. Sixty male Sprague‒Dawley rats were divided into six groups (n = 10/group). DMED modelling was demonstrated by APO experiments and was assessed by measuring blood glucose levels. Erectile function was assessed by measuring the intracavernosa pressure (ICP) and mean arterial pressure (MAP). Penile erectile tissue was analysed by qRT‒PCR, Western blot analysis, and immunohistochemical staining. RESULTS: MALAT1 under VEGFA treatment conditions regulates the differentiation of BM-MSCs into ECs by modulating the CDC42/PAK1/paxillin axis. In vitro experiments demonstrated that interference with CDC42 and MALAT1 expression inhibited the differentiation of BM-MSCs to ECs. CDC42 binds to PAK1, and PAK1 binds to paxillin. In addition, CDC42 in the VEGFA group had a greater ability to bind to PAK1, whereas PAK1 in the VEGFA group had a greater ability to bind to paxillin. Overexpression of miR-206 in VEGFA-induced BM-MSCs demonstrated that MALAT1 competes with the CDC42 3'-UTR for binding to miR-206, which in turn is involved in the differentiation of BM-MSCs to ECs. Compared to the DMED model group, the ICP/MAP ratio was significantly greater in the three BM-MSCs treatment groups. CONCLUSIONS: MALAT1 facilitates BM-MSC differentiation into ECs by regulating the miR-206/CDC42/PAK1/paxillin axis to improve ED. The present findings revealed the vital role of MALAT1 in the repair of BM-MSCs for erectile function and provided new mechanistic insights into the BM-MSC-mediated repair of DMED.


Assuntos
Diferenciação Celular , Disfunção Erétil , Células-Tronco Mesenquimais , MicroRNAs , Paxilina , RNA Longo não Codificante , Ratos Sprague-Dawley , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP , Quinases Ativadas por p21 , Masculino , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Ratos , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Células-Tronco Mesenquimais/metabolismo , Disfunção Erétil/terapia , Disfunção Erétil/genética , Disfunção Erétil/metabolismo , Paxilina/metabolismo , Paxilina/genética , Células Endoteliais/metabolismo , Células Cultivadas , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
11.
Inorg Chem ; 63(5): 2418-2430, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38264973

RESUMO

Uranyl cation, as an emerging photocatalyst, has been successfully applied to synthetic chemistry in recent years and displayed remarkable catalytic ability under visible light. However, the molecular-level reaction mechanisms of uranyl photocatalysis are unclear. Here, we explore the mechanism of the stepwise benzylic C-H oxygenation of typical alkyl-substituted aromatics (i.e., toluene, ethylbenzene, and cumene) via uranyl photocatalysis using theoretical and experimental methods. Theoretical calculation results show that the most favorable reaction path for uranyl photocatalytic oxidation is as follows: first, hydrogen atom transfer (HAT) from the benzyl position to form a carbon radical ([R•]), then oxygen addition ([R•] + O2 → [ROO•]), then radical-radical combination ([ROO•] + [R•] → [ROOR] → 2[RO•]), and eventually [RO•] reduction to produce alcohols, of which 2° alcohol would further be oxidized to ketones and 1° would be stepwise-oxygenated to acids. The results of the designed verification experiments and the capture of reactive intermediates were consistent with those of theoretical calculations and the previously reported research that the active benzylic C-H would be stepwise-oxygenated in the presence of uranyl. This work deepens our understanding of the HAT mechanism of uranyl photocatalysis and provides important theoretical support for the relevant application of uranyl photocatalysts in organic transformation.

12.
J Sex Marital Ther ; 50(3): 303-314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37981896

RESUMO

This study investigated patterns of sexual agreement for extra-dyadic sex and their associations with sexual risk behaviors among men who have sex with men (MSM) having a regular male sex partner (RP) in China. A cross-sectional telephone survey was conducted among 530 MSM recruited through multiple sources in Hong Kong, China, between April and December 2020. This study was based on a subsample of 368 participants who had an RP in the past 6 months. Logistic regression models were fitted. Among the participants, 27.2%, 13.0%, and 3.0% had a closed agreement, an in-between agreement, and an open agreement, respectively. Compared to no agreement, a closed agreement was associated with fewer extra-dyadic partners and fewer instances of condomless sex with extra-dyadic partners. Those who had more positive attitudes toward a closed agreement, perceived more support from significant others to create a closed agreement, and perceived higher behavioral control of refraining from sex with extra-dyadic partners were more likely to have a closed agreement with RP. Those who were concerned that a closed agreement would impair freedom and sexual desire were less likely to have such an agreement. A closed agreement is a potentially useful risk reduction strategy for Chinese MSM with an RP.


Assuntos
Infecções por HIV , Minorias Sexuais e de Gênero , Masculino , Humanos , Homossexualidade Masculina , Hong Kong , Estudos Transversais , Comportamento Sexual , Parceiros Sexuais , China
13.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33833056

RESUMO

Embryonic stem cells (ESCs) and induced pluripotent stem cells have the potential to differentiate to all cell types of an adult individual and are useful for studying development and for translational research. However, extrapolation of mouse and human ESC knowledge to deriving stable ESC lines of domestic ungulates and large livestock species has been challenging. In contrast to ESCs that are usually established from the blastocyst, mouse expanded potential stem cells (EPSCs) are derived from four-cell and eight-cell embryos. We have recently used the EPSC approach and established stem cells from porcine and human preimplantation embryos. EPSCs are molecularly similar across species and have broader developmental potential to generate embryonic and extraembryonic cell lineages. We further explore the EPSC technology for mammalian species refractory to the standard ESC approaches and report here the successful establishment of bovine EPSCs (bEPSCs) from preimplantation embryos of both wild-type and somatic cell nuclear transfer. bEPSCs express high levels of pluripotency genes, propagate robustly in feeder-free culture, and are genetically stable in long-term culture. bEPSCs have enriched transcriptomic features of early preimplantation embryos and differentiate in vitro to cells of the three somatic germ layers and, in chimeras, contribute to both the embryonic (fetal) and extraembryonic cell lineages. Importantly, precise gene editing is efficiently achieved in bEPSCs, and genetically modified bEPSCs can be used as donors in somatic cell nuclear transfer. bEPSCs therefore hold the potential to substantially advance biotechnology and agriculture.


Assuntos
Bovinos/genética , Células-Tronco Embrionárias/citologia , Técnicas de Transferência Nuclear/veterinária , Cultura Primária de Células/métodos , Animais , Blastocisto/citologia , Linhagem da Célula , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Cultura Primária de Células/veterinária , Transcriptoma
14.
Nano Lett ; 23(14): 6610-6618, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37458704

RESUMO

Diabetic ulcers have received much attention in recent years due to their high incidence and mortality, motivating the scientific community to develop various strategies for such chronic disease treatments. However, the therapeutic outcome of these approaches is highly compromised by invasive bacteria and a severe inflammatory microenvironment. To overcome these dilemmas, microenvironment-responsive self-delivery glucose oxidase@manganese sulfide (GOx@MnS) nanoparticles (NPs) are developed by one-step biomineralization. When they encounter the high glucose level in the ulcer site, GOx particles catalyze glucose to decrease the local pH and trigger the steady release of both manganese ions (Mn2+) and hydrogen sulfide (H2S). Mn2+ reacts with hydrogen peroxide to generate hydroxyl radicals for the elimination of bacterial infection; meanwhile, H2S is able to suppress the inflammatory response and accelerate diabetic wound healing through macrophage polarization. The excellent biocompatibility, strong bactericidal activity, and considerable immunomodulatory effect promise GOx@MnS NPs have great therapeutic potential for diabetic wound treatment.


Assuntos
Diabetes Mellitus , Sulfeto de Hidrogênio , Nanopartículas , Humanos , Glucose Oxidase/uso terapêutico , Glucose , Peróxido de Hidrogênio
15.
Stroke ; 54(4): 1037-1045, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36916272

RESUMO

BACKGROUND: Multidelay arterial spin labeling (ASL) is a novel perfusion method of ASL, with arterial transit time (ATT) calculated by multiple postlabeling delays to correct cerebral blood flow (CBF). We verify the accuracy of multidelay ASL in evaluating the ischemic penumbra and perfusion levels in patients with acute ischemic stroke, compared with computed tomography perfusion (CTP). METHODS: Patients with acute ischemic stroke with anterior circulation large vessel occlusion received baseline CTP, multidelay ASL, and diffusion-weighted imaging (DWI) in succession. Multidelay ASL image was processed to reconstruct ATT, CBF without ATT correction, and CBF corrected by ATT. The consistency of hypoperfusion and ischemic penumbra volume calculated by CTP and multidelay ASL were quantified by intraclass correlation coefficient (ICC) in 2-way mixed effects, absolute agreement, and single measure. Wilcoxon signed-rank test was used to compare the difference in penumbra volume between CTP, corrected ASL, and uncorrected ASL. RESULTS: Thirty patients were included. Hypoperfusion volume based on multidelay ASL with different thresholds were 117.95 (87.77-151.49) mL for corrected relative CBF<40%, 130.29 (85.99-249.37) mL for CBF corrected by ATT<20 mL·100g-1·min-1, no statistical difference (P>0.05) compared with the volume of CTP, and consistency was almost excellent (ICC, 0.91) and substantial consistent (ICC, 0.727). The volumes of ischemic penumbra were 91.00 (42.68-125.27) mL for corrected relative CBF<40%-DWI, 108.94 (62.03-150.86) mL for CBF corrected by ATT<20 mL·100 g-1·min-1-DWI, which showed no statistical difference compared with the penumbra volume of CTP (P>0.05). The consistency was excellent (ICC, 0.822) and moderate (ICC, 0.501), respectively. The volume of uncorrected relative CBF <40%-DWI was 209.57 (123.21-292.45) mL, statistically larger than corrected relative CBF <40%-DWI (P<0.001) and CTP (P<0.001). The volume of uncorrected CBF<20 mL·100g-1·min-1-DWI was 186.23 (86.56-298.22) mL, statistically larger than CBF corrected by ATT<20 mL·100g-1·min-1-DWI (P<0.001) and CTP(P<0.001). CONCLUSIONS: The volume of ischemic penumbra determined by CBF/DWI mismatch based on multidelay ASL is consistent with CTP. The penumbra volume calculated by CBF adjusted by ATT is more accurate.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Doenças Vasculares , Humanos , Imageamento por Ressonância Magnética/métodos , Marcadores de Spin , Imagem de Difusão por Ressonância Magnética , Perfusão , Circulação Cerebrovascular/fisiologia , Acidente Vascular Cerebral/diagnóstico por imagem
16.
Biochem Biophys Res Commun ; 652: 31-34, 2023 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-36809702

RESUMO

Vibrational strong coupling (VSC) has been reported as a polariton-based method for modulating the rate of biochemical reactions. Herein, we studied how VSC modulates the sucrose hydrolysis. By monitoring the refractive index-induced shift of Fabry-Pérot microcavity, in which the catalytic efficiency of sucrose hydrolysis can be increased at least two times, as VSC was tuned to resonate with the stretching vibration of O-H bonds. This research provides new evidence for applying VSC in life sciences, which holds great promise to improving enzymatic industries.


Assuntos
Disciplinas das Ciências Biológicas , Sacarase , Vibração , Catálise , Sacarose
17.
Biol Reprod ; 108(6): 887-901, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37040346

RESUMO

The mule is the interspecific hybrid of horse and donkey and has hybrid vigor in muscular endurance, disease resistance, and longevity over its parents. Here, we examined adult fibroblasts of mule (MAFs) compared with the cells from their parents (donkey adult fibroblasts and horse adult fibroblasts) (each species has repeated three independent individuals) in proliferation, apoptosis, and glycolysis and found significant differences. We subsequently derived mule, donkey, and horse doxycycline (Dox)-independent induced pluripotent stem cells (miPSCs, diPSCs, and hiPSCs) from three independent individuals of each species and found that the reprogramming efficiency of MAFs was significantly higher than that of cells of donkey and horse. miPSCs, diPSCs, and hiPSCs all expressed the high levels of crucial endogenous pluripotency genes such as POU class 5 homeobox 1 (POU5F1, OCT4), SRY-box 2 (SOX2), and Nanog homeobox (NANOG) and propagated robustly in single-cell passaging. miPSCs exhibited faster proliferation and higher pluripotency and differentiation than diPSCs and hiPSCs, which were reflected in co-cultures and separate-cultures, teratoma formation, and chimera contribution. The establishment of miPSCs provides a unique research material for the investigation of "heterosis" and perhaps is more significant to study hybrid gamete formation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Cavalos , Animais , Reprogramação Celular , Equidae , Células Cultivadas , Diferenciação Celular/genética , Fibroblastos , Fator 3 de Transcrição de Octâmero/genética
18.
Opt Express ; 31(12): 19722-19732, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381381

RESUMO

MXenes exhibit a variety of unique electronic, optical, chemical, and mechanical properties. In this work, the nonlinear optical (NLO) properties of Nb4C3Tx are systematically investigated. The Nb4C3Tx nanosheets exhibit saturable absorption (SA) response from visible region to near-infrared region and better saturability under 6 ns pulse excitation than that under 380 fs excitation. The ultrafast carrier dynamics show a relaxation time of ∼6 ps, which suggests a high optical modulation speed of ∼160 GHz. Consequently, an all-optical modulator is demonstrated by transferring the Nb4C3Tx nanosheets to the microfiber. The signal light can be modulated well by pump pulses with a modulation rate of 5 MHz and an energy consumption of 12.564 nJ. Our study indicates that Nb4C3Tx is a potential material for nonlinear devices.

19.
Opt Lett ; 48(23): 6259-6262, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039241

RESUMO

Rhenium diselenide (ReSe2) has shown great application potential in the field of optical devices because of its excellent optoelectronic properties. In this study, we systematically investigated the nonlinear optical absorption properties of mono- and bi-layer ReSe2 and the ultrafast carrier dynamics process in the ultraviolet to near-infrared spectral range as the essential foundational groundwork for harnessing the potential of ultrathin ReSe2-based optoelectronic devices. We found that ReSe2 has excellent nonlinear absorption performance and a low saturation absorption intensity that is better than that of many semiconductor materials. Meanwhile, pump-probe and transient absorption technology revealed the underlying dynamic mechanisms, including bandgap renormalization and Auger recombination. This study can broaden the horizons of material science and propel the development of different applications of ReSe2.

20.
Photochem Photobiol Sci ; 22(4): 905-917, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36750541

RESUMO

BACKGROUND: The aim of this study was to identify changes in gene expression before and after 5-aminolevulinic acid-mediated photodynamic therapy (5-ALA-PDT) and to investigate the potential mechanism of 5-ALA-PDT based on ribonucleic acid sequencing (RNA-Seq) analysis. METHODS: Secondary hyperparathyroidism (SHPT) primary cells were isolated from surgically excised specimens and exposed to laser light. The transcription profiles of SHPT primary cells were identified through RNA-Seq. Differentially expressed genes (DEGs) were identified. Enrichment of functions and signaling pathway analysis were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analysis were used to validate genes based on RNA-Seq results. RESULTS: In total, 1320 DEGs were identified, of which 1019 genes were upregulated and 301 genes were downregulated. GO and KEGG pathway analyses identified significantly enriched pathways in DEGs, including TGF beta in extracellular matrix (ECM), negative regulation of triglyceride biosynthetic process, protein heterodimerization activity, systemic lupus erythematosus, ECM-receptor interaction, focal adhesion and protein digestion and absorption. Protein-protein interaction (PPI) network analyses identified potential heat shock protein (HSP) interactions among the DEGs. Eight HSP genes were also identified that were most likely involved in 5-ALA-PDT, which were further validated by RT-qPCR and western blotting. CONCLUSIONS: The findings of this descriptive study reveal changes in the transcriptome profile during 5-ALA-PDT, suggesting that gene expression and mutation, signaling pathways, and the molecular network are altered in SHPT primary cells. The above findings provide new insight for further studies on the mechanisms underlying 5-ALA-PDT in SHPT.


Assuntos
Fotoquimioterapia , Transcriptoma , RNA-Seq , RNA , Perfilação da Expressão Gênica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA