Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Angew Chem Int Ed Engl ; 61(28): e202202336, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35506192

RESUMO

Rare studies of cocrystal engineering have focused on improving carrier mobility of organic semiconductors mainly because of the generation of ambipolarity, the alteration of the charge carrier polarity or the reduction of electronic couplings. Herein, we utilize indolo[2,3-a]carbazole (IC) as the model compound and 2,6-diphenylanthraquinone (DPAO) and 9-fluorenone (FO) as the coformers to construct IC2-DPAO and IC-FO cocrystals with 2 : 1 or 1 : 1 ratios, respectively, through hydrogen bonds and donor-acceptor interactions. Interestingly, the more appropriate packing structure, possessing not only enhanced electronic couplings but also increased intermolecular distances, is achieved in IC2-DPAO, which shows an improved carrier mobility of 0.11 cm2  V-1 s-1 by four orders of magnitude relative to the IC crystal. These results suggest that non-equal ratio cocrystal engineering opens up the possibility to develop organic semiconductors with enhanced charge transport behaviors.

2.
Small ; 16(24): e2001070, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32419332

RESUMO

Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal-organic frameworks, COFs are a new type of porous materials with well-designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal-free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF-based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented.

3.
Chemistry ; 26(16): 3578-3585, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31774587

RESUMO

Although cocrystallization has provided a promising platform to develop new organic optoelectronic materials, it is still a big challenge to purposely design and achieve specific optoelectronic properties. Herein, a series of mixed-stacking cocrystals (TMFA, TMCA, and TMTQ) were designed and synthesized, and the regulatory effects of the acceptors on the co-assembly behavior, charge-transfer nature, energy-level structures, and optoelectronic characteristics were systematically investigated. The results demonstrate that it is feasible to achieve effective charge-transport tuning and photoresponse switching by carefully regulating the intermolecular charge transfer and energy orbitals. The inherent mechanisms underlying the change in these optoelectronic behaviors were analyzed in depth and elucidated to provide clear guidelines for future development of new optoelectronic materials. In addition, due to the excellent photoresponsive characteristics of TMCA, TMCA-based phototransistors were investigated with varying light wavelength and optical power, and TMCA shows the best performance among all reported cocrystals under UV illumination.

4.
Chemistry ; 26(19): 4220-4225, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32017260

RESUMO

A series of imide-fused diazatetracenes were synthesized via Buchwald-Hartwig C-N coupling with a highly active palladium source. The introduction of an imide segment effectively lowers the LUMO levels compared with that of unsubstituted diazatetracene. By adjusting the alkyl chains of the diazatetracenes, different solid-state packings were achieved, resulting in distinct photoluminescent behaviors. Their electron-transporting properties were demonstrated in the proof-of-concept Perovskite solar cells as electron transporting layers.

5.
Angew Chem Int Ed Engl ; 59(40): 17580-17586, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32618035

RESUMO

A practicable strategy to rationally obtain the reversible mechanochromic luminescent (MCL) material with high-contrast ratio (green versus red) has been established. By introducing a volatile third party (small-sized solvent molecules) into the lattice of charge transfer (CT) cocrystal of mixed-stacking 1:1 coronene (Cor.) and napthalenetetracarboxylic diimide (NDI), a noteworthy reconfigurable molecular assembly is ingeniously achieved owing to the loosely packing arrangement as well as weakened intermolecular interactions. Accordingly, the CT excited state, strongly corresponding to the molecular stacking modes, can be intentionally tailored through external stimulus (heating, grinding, or solvent), accompanying distinct changes in photophysical properties. Subsequently, a high-contrast reversible MCL with highly sensitive and good reproducibility is realized and the underlying mechanism is thoroughly revealed.

6.
Small ; 15(29): e1803339, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30370590

RESUMO

It is highly desirable to employ n-type polymers as electron transporting layers (ETLs) in inverted perovskite solar cells (PSCs) due to their good electron mobility, high hydrophobicity, and simplicity of film forming. In this research, the capability of three n-type donor-acceptor1 -donor-acceptor2 (D-A1 -D-A2 ) conjugated polymers (pBTT, pBTTz, and pSNT) is first explored as ETLs because these polymers possess electron mobilities as high as 0.92, 0.46, and 4.87 cm2 (Vs)-1 in n-channel organic transistors, respectively. The main structural difference among pBTT, pBTTz, and pSNT is the position of sp2 -nitrogen atoms (sp2 -N) in the polymer main chains. Therefore, the effect of different substitution positions on the PSC performances is comprehensively studied. The as-fabricated p-i-n PSCs with pBTT, pBTTz, and pSNT as ETLs show the maximum photoconversion efficiencies of 12.8%, 14.4%, and 12.0%, respectively. To be highlighted, pBTTz-based device can maintain 80% of its stability after ten days due to its good hydrophobicity, which is further confirmed by a contact angle technique. More importantly, the pBTTz-based device shows a neglected hysteresis. This study reveals that the n-type polymers can be promising candidates as ETLs to approach solution-processed highly-efficient inverted PSCs.

7.
Angew Chem Int Ed Engl ; 58(29): 9696-9711, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30756463

RESUMO

Organic cocrystals based on noncovalent intermolecular interactions (weak interactions) have aroused interest owing to their unpredicted and versatile chemicophysical properties and their applications. In this Minireview, we highlight recent research on organic cocrystals on reducing the aggregation-caused quenching (ACQ) effect, tuning light emission, ferroelectricity and multiferroics, optical waveguides, and stimuli-responsiveness. We also summarize the progress made in this field including revealing the structure-property relationships and developing unusual properties. Moreover, we provide a discussion on current achievements, limitations and perspectives as well as some directions and inspiration for further investigation on organic cocrystals.

8.
J Am Chem Soc ; 140(1): 62-65, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29205033

RESUMO

While cofacial one-dimensional (1-D) π stacking of a planar aromatic molecule is ideal for the construction of conduction systems, such molecules, including tetrabenzoporphyrin (BP), prefer to form edge-to-face stacking through CH-π interactions. We report here that the BP molecules spontaneously form a 1-D cofacial stack in chloroform containing 1% trifluoroacetic acid (TFA) and that a bundle of the formed nanofiber shows acid-responsive 1-D conductivity as high as 1904 S m-1. A small fraction (2.7%) of BP in the fiber exists in a cation radical state, and 1.5 equiv of TFA is located in an intercolumnar void. Dedoping and redoping of TFA with trimethylamine vapor results in 1300-2700-fold decreases and increases, respectively, in the conductivity and also the amount of the radical cation. The conductivity of the fiber also shows a correlation with the pKa of acid dopants.

9.
Phys Chem Chem Phys ; 17(40): 26519-24, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26035451

RESUMO

A new naphthalene diimide (NDI) derivative with an asymmetric aromatic backbone of 2-tetradecylbenzo[lmn]benzo[4,5]imidazo[2,1-b][3,8]phenanthroline-1,3,6(2H)-trione (IZ0) was designed and synthesized. Low LUMO level, large energy gap, and high thermal stability are characterized for this IZ0 compound. The OFET devices based on an IZ0 semiconductor exhibit typical n-type behavior. Through continuously optimizing the fabrication conditions, high performance n-channel OFETs were fabricated based on IZ0 films and single crystals, with the highest carrier mobility of 0.072 cm(2) V(-1) s(-1) and 0.22 cm(2) V(-1) s(-1), respectively.

10.
ACS Omega ; 7(22): 18197-18205, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35694519

RESUMO

Self-healing materials play an essential role in the field of organic electronics with numerous stunning applications such as novel integrated and wearable devices. With the development of stretchable, printable, and implantable electronics, organic field-effect transistors (OFETs) with a self-healable capability are becoming increasingly important both academically and industrially. However, the related research work is still in the initial stage due to the challenges in developing robust self-healing electronic materials with both electronic and mechanical properties. In this mini-review, we have summarized the recent research progress in self-healing materials used in OFETs from conductor, semiconductor, and insulator materials. Moreover, the relationship between the material design and device performance for self-healing properties is also further discussed. Finally, the primary challenges and outlook in this field are introduced. We believe that the review will shed light on the development of self-healing electronic materials for application in OFETs.

11.
ACS Nano ; 14(11): 15962-15972, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33112602

RESUMO

Developing an effective and green method toward organic functional cocrystals based on the solubility-mismatched coformers is highly desirable and very important. Herein, we applied a green two-step liquid-assisted-grinding coassembly (LAGC) in fabricating tetracene-octafluoronaphthalene (TC-OFN) cocrystals from solubility-mismatched pairs of tetracene (TC, poorly soluble, 0.2 mg mL-1) and octafluoronaphthalene (OFN, highly soluble, 0.2 × 104 mg mL-1). Such cocrystals are extremely difficult to prepare through the common solution-processing strategies. More importantly, this two-step LAGC process could allow us to efficiently prepare TC-OFN cocrystals in gram scale. The as-prepared cocrystals displayed the intrinsic green emission of TC with much higher photoluminescence quantum yield (13.75%) comparing with the pure solid TC with the almost-quenched emission (0.41%, aggregation-caused quenching (ACQ)). The ultrafast spectra study on these cocrystals verifies the successful barrier function of OFN molecules in interrupting the well-known singlet fission (SF) in TC solids. Furthermore, this method can allow us to easily fabricate fluorescent TC-OFN water inks, which can be employed to prepare luminescent paintings or highly emissive ultratransparent/flexible films.

12.
Chem Asian J ; 15(1): 112-121, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31730261

RESUMO

One of key factors to design applicable electron transport layers (ETLs) for perovskite solar cells is the morphology of ETLs since a good morphology would help to facilitate the carrier transport at two interfaces (perovskite\ETL and ETL\cathode). However, one drawback of most organic ETL small molecules is the internal undesired accumulation, which would cause the formation of inappropriate morphology and rough ETL surface. Here, by elaborately designing the side chains of NDI derivatives, the molecular interaction could be modified to achieve the aggregation in different degrees, which would eventually affect the accumulation of molecules and surface qualities of ETLs. By speculating from the comparison between the absorption spectra of solutions and films, the sequence of extent of molecule interaction and aggregation was built among three NDI derivatives, which is further confirmed by direct evidence of atomic force microscopy (AFM) images. Then, carrier exaction abilities are simply studied by steady-state photoluminescence spectroscopy. The carrier transport process is also discussed based on cyclic voltammetry, time-resolved photoluminescence spectroscopy and mobility. NDIF1 are proven to have the appropriate internal aggregation to smooth the contact with cathode and low series resistance, and a device performance of 15.6 % is achieved. With the ability of preventing the thermal diffusion of Ag towards the perovskite surface due to the strong interaction between molecules, NDIF2 at high concentration shows the highest fill factor (80 %).

13.
Nat Commun ; 10(1): 169, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635576

RESUMO

The features of well-conjugated and planar aromatic structures make π-conjugated luminescent materials suffer from aggregation caused quenching (ACQ) effect when used in solid or aggregated states, which greatly impedes their applications in optoelectronic devices and biological applications. Herein, we reduce the ACQ effect by demonstrating a facile and low cost method to co-assemble polycyclic aromatic hydrocarbon (PAH) chromophores and octafluoronaphthalene together. Significantly, the solid photoluminescence quantum yield (PLQYs) for the as-resulted four micro/nanococrystals are enhanced by 254%, 235%, 474 and 582%, respectively. Protection from hydrophilic polymer chains (P123 (PEO20-PPO70-PEO20)) endows the cocrystals with superb dispersibility in water. More importantly, profiting from the above-mentioned highly improved properties, nano-cocrystals present good biocompatibility and considerable cell imaging performance. This research provides a simple method to enhance the emission, biocompatibility and cellular permeability of common chromophores, which may open more avenues for the applications of originally non- or poor fluorescent PAHs.


Assuntos
Antracenos/química , Fluorocarbonos/química , Luminescência , Naftalenos/química , Compostos Policíclicos/química , Humanos , Células MCF-7 , Nanopartículas/análise , Nanopartículas/química , Imagem Óptica
14.
ACS Appl Mater Interfaces ; 11(47): 44487-44500, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31692320

RESUMO

Developing air-stable high-performance small organic molecule-based n-type and ambipolar organic field-effect transistors (OFETs) is very important and highly desirable. In this investigation, we designed and synthesized two naphthalenediimide (NDI) derivatives (NDI-BTH1 and NDI-BTH2) and found that introduction of 2-(benzo[d]thiazol-2-yl) acetonitrile groups at the NDI core position gave the lowest unoccupied molecular orbital (LUMO; -4.326 eV) and displayed strong electron affinities, suggesting that NDI-BTH1 might be a promising electron-transporting material (i.e., n-type semiconductor), whereas NDI-BTH2 bearing bis(benzo[d]thiazol-2-yl)methane at the NDI core with a LUMO of -4.243 eV was demonstrated to be an ambipolar material. OFETs based on NDI-BTH1 and NDI-BTH2 have been fabricated, and the electron mobilities of NDI-BTH1 and NDI-BTH2 are 14.00 × 10-5 and 8.64 × 10-4 cm2/V·s, respectively, and the hole mobility of NDI-BTH2 is 1.68 × 10-4 cm2/V·s. Moreover, a difference in NDI-core substituent moieties significantly alters the UV-vis absorption and cyclic voltammetry properties. Thus, we further successfully employed NDI-BTH1 and NDI-BTH2 as electron transport layer (ETL) materials in inverted perovskite solar cells (PSCs). The PSC performance exhibits that NDI-BTH2 as the ETL material gave higher power conversion efficiency as compared to NDI-BTH1, that is, NDI-BTH2 produces 15.4%, while NDI-BTH1 gives 13.7%. The PSC performance is comparable with the results obtained from OFETs. We presume that improvement in solar cell efficiency of NDI-BTH2-based PSCs is due to the well-matched LUMO of NDI-BTH2 toward the conduction band of the perovskite layer, which in turn increase electron extraction and transportation.

15.
ACS Appl Mater Interfaces ; 8(12): 7919-27, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26967358

RESUMO

Poor charge injection and transport at the electrode/semiconductor contacts has been so far a severe performance hurdle for bottom-contact bottom-gate (BCBG) organic field-effect transistors (OFETs). Here, we have developed a simple, economic, and effective method to improve the carrier injection efficiency and obtained high-performance devices with low cost and widely used source/drain (S/D) electrodes (Ag/Cu). Through the simple electrode etching process, the work function of the electrodes is more aligned with the semiconductors, which reduces the energy barrier and facilitates the charge injection. Besides, the formation of the thinned electrode edge with desirable micro/nanostructures not only leads to the enlarged contact side area beneficial for the carrier injection but also is in favor of the molecular self-organization for continuous crystal growth at the contact/active channel interface, which is better for the charge injection and transport. These effects give rise to the great reduction of contact resistance and the amazing improvement of the low-cost bottom-contact configuration OFETs performance.

16.
Nat Commun ; 6: 7478, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26085081

RESUMO

Molecular electronics describes a field that seeks to implement electronic components made of molecular building blocks. To date, few studies have used conjugated polymers in molecular junctions despite the fact that they potentially transport charge more efficiently than the extensively investigated small-molecular systems. Here we report a novel type of molecular tunnelling junction exploring the use of conjugated polymers, which are self-assembled into ultrathin films in a distinguishable 'planar' manner from the traditional vertically oriented small-molecule monolayers. Electrical measurements on the junctions reveal molecular-specific characteristics of the polymeric molecules in comparison with less conjugated small molecules. More significantly, we decorate redox-active functionality into polymeric backbones, demonstrating a key role of redox centre in the modulation of charge transport behaviour via energy level engineering and external stimuli, and implying the potential of employing tailor-made polymeric components as alternatives to small molecules for future molecular-scale electronics.

17.
Chem Commun (Camb) ; 51(59): 11777-9, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26107104

RESUMO

An anthracene derivative, 2,6-diphenyl anthracene (DPA), was successfully synthesized with three simple steps and a high yield. The compound was determined to be a durable high performing semiconductor with thin film device mobility over 10 cm(2) V(-1) s(-1). The efficient synthesis and high performance indicates its great potential in organic electronics.

18.
Adv Mater ; 27(5): 825-30, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25521073

RESUMO

The first example for thienoacene derivatives with selective growth of different crystal polymorphs is simply achieved by solution-phase self-assembly. Compared with platelet-shaped α-phase crystals, organic field-effect transistors (OFETs) based on microribbon-shaped ß-phase crystals show a hole mobility up to 18.9 cm(2) V(-1) s(-1), which is one of the highest values for p-type organic semiconductors measured under ambient conditions.

19.
Adv Mater ; 25(43): 6158-83, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24105677

RESUMO

Remarkable progress has been made in developing high performance organic field-effect transistors (OFETs) and the mobility of OFETs has been approaching the values of polycrystalline silicon, meeting the requirements of various electronic applications from electronic papers to integrated circuits. In this review, the key points for development of high mobility OFETs are highlighted from aspects of molecular engineering, process engineering and interface engineering. The importance of other factors, such as impurities and testing conditions is also addressed. Finally, the current challenges in this field for practical applications of OFETs are further discussed.


Assuntos
Compostos Orgânicos/química , Transistores Eletrônicos , Aniversários e Eventos Especiais , Elétrons , Polímeros/química , Teoria Quântica
20.
ACS Appl Mater Interfaces ; 5(7): 2316-9, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23270576

RESUMO

A novel process called "double exposure method" has for the first time been developed to utilize common organic materials as insulating layers at low annealing temperature in the process of photolithography. In this method, organic dielectric layer will not dissolve in the final lift-off step by using developer to replace traditional acetone. Bottom-gate bottom-contact (BGBC) OFETs are fabricated on the flexible PET substrates with polystyrene (PS) and pentacene as dielectric layer and semiconductor layer, respectively. Transistors with mobility of 0.36 cm2 V(-1) s(-1) and logic inverter with gain of 9 on the plastic substrates have been fabricated, demonstrating the potential appliction of "double exposure method" in flexible organic electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA