Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Dev Biol ; 439(2): 92-101, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29684311

RESUMO

During development, the embryo transitions from a metabolism favoring glycolysis to a metabolism favoring mitochondrial respiration. How metabolic shifts regulate developmental processes, or how developmental processes regulate metabolic shifts, remains unclear. To test the requirement of mitochondrial function in developing endoderm-derived tissues, we genetically inactivated the mitochondrial transcription factor, Tfam, using the Shh-Cre driver. Tfam mutants did not survive postnatally, exhibiting defects in lung development. In the developing intestine, TFAM-loss was tolerated until late fetal development, during which the process of villus elongation was compromised. While progenitor cell populations appeared unperturbed, markers of enterocyte maturation were diminished and villi were blunted. Loss of TFAM was also tested in the adult intestinal epithelium, where enterocyte maturation was similarly dependent upon the mitochondrial transcription factor. While progenitor cells in the transit amplifying zone of the adult intestine remained proliferative, intestinal stem cell renewal was dependent upon TFAM, as indicated by molecular profiling and intestinal organoid formation assays. Taken together, these studies point to critical roles for the mitochondrial regulator TFAM for multiple aspects of intestinal development and maturation, and highlight the importance of mitochondrial regulators in tissue development and homeostasis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Grupo de Alta Mobilidade/fisiologia , Mucosa Intestinal/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Autorrenovação Celular/fisiologia , Proteínas de Ligação a DNA/genética , Feto/metabolismo , Regulação da Expressão Gênica/genética , Glicólise/genética , Glicólise/fisiologia , Proteínas de Grupo de Alta Mobilidade/genética , Mucosa Intestinal/embriologia , Mucosa Intestinal/crescimento & desenvolvimento , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Organogênese/genética , Organogênese/fisiologia , Organoides/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
2.
bioRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38746236

RESUMO

Stem cells often rely on signals from a niche, which in many tissues adopts a precise morphology. What remains elusive is how niches are formed, and how morphology impacts function. To address this, we leverage the Drosophila gonadal niche, which affords genetic tractability and live-imaging. We have previously shown mechanisms dictating niche cell migration to their appropriate position within the gonad, and the resultant consequences on niche function. Here, we show that once positioned, niche cells robustly polarize filamentous actin (F-actin) and Non-muscle Myosin II (MyoII) towards neighboring germ cells. Actomyosin tension along the niche periphery generates a highly reproducible smoothened contour. Without contractility, niches are misshapen and exhibit defects in their ability to regulate germline stem cell behavior. We additionally show that germ cells aid in polarizing MyoII within niche cells, and that extrinsic input is required for niche morphogenesis and function. Our work reveals a feedback mechanism where stem cells shape the niche that guides their behavior.

3.
J Bone Miner Res ; 38(9): 1364-1385, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37329499

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is a rare human genetic condition characterized by altered skeletal development and extraskeletal bone formation. All cases of FOP are caused by mutations in the type I bone morphogenetic protein (BMP) receptor gene ACVR1 that result in overactivation of the BMP signaling pathway. Activation of the wild-type ACVR1 kinase requires assembly of a tetrameric type I and II BMP receptor complex followed by phosphorylation of the ACVR1 GS domain by type II BMP receptors. Previous studies showed that the FOP-mutant ACVR1-R206H required type II BMP receptors and presumptive glycine/serine-rich (GS) domain phosphorylation for overactive signaling. Structural modeling of the ACVR1-R206H mutant kinase domain supports the idea that FOP mutations alter the conformation of the GS domain, but it is unclear how this leads to overactive signaling. Here we show, using a developing zebrafish embryo BMP signaling assay, that the FOP-mutant receptors ACVR1-R206H and -G328R have reduced requirements for GS domain phosphorylatable sites to signal compared to wild-type ACVR1. Further, ligand-independent and ligand-dependent signaling through the FOP-mutant ACVR1 receptors have distinct GS domain phosphorylatable site requirements. ACVR1-G328R showed increased GS domain serine/threonine requirements for ligand-independent signaling compared to ACVR1-R206H, whereas it exhibited reduced serine/threonine requirements for ligand-dependent signaling. Remarkably, while ACVR1-R206H does not require the type I BMP receptor partner, Bmpr1, to signal, a ligand-dependent GS domain mutant of ACVR1-R206H could signal independently of Bmpr1 only when Bmp7 ligand was overexpressed. Of note, unlike human ACVR1-R206H, the zebrafish paralog Acvr1l-R203H does not show increased signaling activity. However, in domain-swapping studies, the human kinase domain, but not the human GS domain, was sufficient to confer overactive signaling to the Acvr1l-R203H receptor. Together these results reflect the importance of GS domain activation and kinase domain functions in regulating ACVR1 signaling and identify mechanisms of reduced regulatory constraints conferred by FOP mutations. © 2023 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Miosite Ossificante , Animais , Humanos , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas/genética , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Ligantes , Mutação/genética , Miosite Ossificante/genética , Miosite Ossificante/metabolismo , Transdução de Sinais/genética , Peixe-Zebra/metabolismo
4.
J Vis Exp ; (164)2020 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-33135688

RESUMO

The Drosophila melanogaster male embryonic gonad is an advantageous model to study various aspects of developmental biology including, but not limited to, germ cell development, piRNA biology, and niche formation. Here, we present a dissection technique to live-image the gonad ex vivo during a period when in vivo live-imaging is highly ineffective. This protocol outlines how to transfer embryos to an imaging dish, choose appropriately-staged male embryos, and dissect the gonad from its surrounding tissue while still maintaining its structural integrity. Following dissection, gonads can be imaged using a confocal microscope to visualize dynamic cellular processes. The dissection procedure requires precise timing and dexterity, but we provide insight on how to prevent common mistakes and how to overcome these challenges. To our knowledge this is the first dissection protocol for the Drosophila embryonic gonad, and will permit live-imaging during an otherwise inaccessible window of time. This technique can be combined with pharmacological or cell-type specific transgenic manipulations to study any dynamic processes occurring within or between the cells in their natural gonadal environment.


Assuntos
Dissecação , Drosophila melanogaster/embriologia , Embrião não Mamífero/diagnóstico por imagem , Gônadas/diagnóstico por imagem , Gônadas/embriologia , Imageamento Tridimensional , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Drosophila melanogaster/citologia , Embrião não Mamífero/citologia , Gônadas/citologia , Masculino
5.
Cell Rep ; 21(13): 3833-3845, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29281831

RESUMO

Oncogenic mutations in BRAF are believed to initiate serrated colorectal cancers; however, the mechanisms of BRAF-driven colon cancer are unclear. We find that oncogenic BRAF paradoxically suppresses stem cell renewal and instead promotes differentiation. Correspondingly, tumor formation is inefficient in BRAF-driven mouse models of colon cancer. By reducing levels of differentiation via genetic manipulation of either of two distinct differentiation-promoting factors (Smad4 or Cdx2), stem cell activity is restored in BRAFV600E intestines, and the oncogenic capacity of BRAFV600E is amplified. In human patients, we observe that reduced levels of differentiation in normal tissue is associated with increased susceptibility to serrated colon tumors. Together, these findings help resolve the conditions necessary for BRAF-driven colon cancer initiation. Additionally, our results predict that genetic and/or environmental factors that reduce tissue differentiation will increase susceptibility to serrated colon cancer. These findings offer an opportunity to identify susceptible individuals by assessing their tissue-differentiation status.


Assuntos
Diferenciação Celular , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Predisposição Genética para Doença , Proteínas Proto-Oncogênicas B-raf/metabolismo , Animais , Fator de Transcrição CDX2/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Neoplasias Colorretais/genética , Modelos Animais de Doenças , Epitélio/metabolismo , Epitélio/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Homeostase , Humanos , Intestinos/patologia , Masculino , Camundongos Mutantes , Proteína Smad4/metabolismo , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA