RESUMO
Curium is unique in the actinide series because its half-filled 5f 7 shell has lower energy than other 5f n configurations, rendering it both redox-inactive and resistant to forming chemical bonds that engage the 5f shell1-3. This is even more pronounced in gadolinium, curium's lanthanide analogue, owing to the contraction of the 4f orbitals with respect to the 5f orbitals4. However, at high pressures metallic curium undergoes a transition from localized to itinerant 5f electrons5. This transition is accompanied by a crystal structure dictated by the magnetic interactions between curium atoms5,6. Therefore, the question arises of whether the frontier metal orbitals in curium(III)-ligand interactions can also be modified by applying pressure, and thus be induced to form metal-ligand bonds with a degree of covalency. Here we report experimental and computational evidence for changes in the relative roles of the 5f/6d orbitals in curium-sulfur bonds in [Cm(pydtc)4]- (pydtc, pyrrolidinedithiocarbamate) at high pressures (up to 11 gigapascals). We compare these results to the spectra of [Nd(pydtc)4]- and of a Cm(III) mellitate that possesses only curium-oxygen bonds. Compared with the changes observed in the [Cm(pydtc)4]- spectra, we observe smaller changes in the f-f transitions in the [Nd(pydtc)4]- absorption spectrum and in the f-f emission spectrum of the Cm(III) mellitate upon pressurization, which are related to the smaller perturbation of the nature of their bonds. These results reveal that the metal orbital contributions to the curium-sulfur bonds are considerably enhanced at high pressures and that the 5f orbital involvement doubles between 0 and 11 gigapascal. Our work implies that covalency in actinides is complex even when dealing with the same ion, but it could guide the selection of ligands to study the effect of pressure on actinide compounds.
RESUMO
M(TpyNO2)(NO3)3(H2O)·THF (M = La, Nd, Sm, Eu, Tb, Am; TpyNO2 = 4'-nitrophenyl terpyridyl) have been prepared from the reaction of M(NO3)3· nH2O with TpyNO2 in THF. Structural analysis shows that the metal centers are 10-coordinate, providing the first example of AmIII with this coordination number. Further spectroscopic and theoretical evaluation of these complexes reveals utilization of the 5f orbitals in bonding in the AmIII complex. Comparison of Nd-L, Eu-L, and Am-L bond distances demonstrates that some caution should be taken in comparing EuIII versus AmIII in extraction experiments.
RESUMO
Quantifying 64Cu in post-detonation nuclear debris samples can provide important diagnostic information regarding the structural materials used within a nuclear device. However, this task is challenging due to the weak gamma emissions associated with the decay of 64Cu, its short half-life (12.701 h), and the presence of interfering fission product radioisotopes. Large quantities of debris sample are generally needed to accurately quantify 64Cu, which can be problematic in sample-limited scenarios where other radiometric analyses are required. Herein, we present a new method for the separation of 64Cu from solutions of mixed fission products and demonstrate the quantification of its activity through use of gas-flow proportional beta counting. The new method was validated through a series of rigorous tests and was shown to improve the detection limit of 64Cu by over two orders of magnitude, from 2.5 × 106 to 1.3 × 104 atoms/sample for 100 min measurements.
RESUMO
A method has been developed to purify and measure platinum radioisotopes in the presence of fission products and environmental constituents. The method uses a combination of cation exchange and anion exchange chromatography and selective precipitation steps to remove other radioisotopes from the sample. The addition of stable platinum carrier allows for a gravimetric determination of the chemical yield of the procedure. Overall, the method is fast, simple, and potentially applicable for rapid turnaround of unknown samples. Using this method, multiple platinum radioisotopes were measured in two different irradiation experiments. The measured ratios of the platinum radioisotopes clearly reflect the neutron spectrum of the irradiation, suggesting that platinum radioisotopes could be valuable signatures in nuclear forensic analyses.