Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 292, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653361

RESUMO

Pancreatic cancer is characterized by extensive resistance to conventional therapies, making clinical management a challenge. Here we map the epigenetic dependencies of cancer stem cells, cells that preferentially evade therapy and drive progression, and identify SWI/SNF complex member SMARCD3 as a regulator of pancreatic cancer cells. Although SWI/SNF subunits often act as tumor suppressors, we show that SMARCD3 is amplified in cancer, enriched in pancreatic cancer stem cells and upregulated in the human disease. Diverse genetic mouse models of pancreatic cancer and stage-specific Smarcd3 deletion reveal that Smarcd3 loss preferentially impacts established tumors, improving survival especially in context of chemotherapy. Mechanistically, SMARCD3 acts with FOXA1 to control lipid and fatty acid metabolism, programs associated with therapy resistance and poor prognosis in cancer. These data identify SMARCD3 as an epigenetic modulator responsible for establishing the metabolic landscape in aggressive pancreatic cancer cells and a potential target for new therapies.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Epigênese Genética , Neoplasias Pancreáticas
2.
Cancers (Basel) ; 13(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34638476

RESUMO

Organotypic tissue slices prepared from patient tumors are a semi-intact ex vivo preparation that recapitulates many aspects of the tumor microenvironment (TME). While connections to the vasculature and nervous system are severed, the integral functional elements of the tumor remain intact for many days during the slice culture. During this window of time, the slice platforms offer a suite of molecular, biomechanical and functional tools to investigate PDAC biology. In this review, we first briefly discuss the development of pancreatic tissue slices as a model system. Next, we touch upon using slices as an orthogonal approach to study the TME as compared to other established 3D models, such as organoids. Distinct from most other models, the pancreatic slices contain autologous immune and other stromal cells. Taking advantage of the existing immune cells within the slices, we will discuss the breakthrough studies which investigate the immune compartment in the pancreas slices. These studies will provide an important framework for future investigations seeking to exploit or reprogram the TME for cancer therapy.

3.
Clin Cancer Res ; 27(7): 2100-2110, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33451980

RESUMO

PURPOSE: Pancreatic cancer is an aggressive disease associated with a poor 5-year overall survival. Most patients are ineligible for surgery due to late diagnosis and are treated primarily with chemotherapy with very limited success. Pancreatic cancer is relatively insensitive to chemotherapy due to multiple factors, including reduced bioavailability of drugs to tumor cells. One strategy to improve drug efficacy with reduced toxicity is the development of antibody-drug conjugates (ADC), which have now been used successfully to treat both solid and liquid tumors. Here, we evaluate the efficacy of TR1801-ADC, a newly developed ADC composed of a MET antibody conjugated to the highly potent pyrrolobenzodiazepine toxin-linker, tesirine. EXPERIMENTAL DESIGN: We first evaluated MET expression and subcellular localization in pancreatic cancer cell lines, human tumors, and patient-derived xenografts (PDX). We then tested TR1801-ADC efficacy in vitro in pancreatic cancer cell lines. Preclinical evaluation of TR1801-ADC efficacy was conducted on PDXs selected on the basis of their MET expression level. RESULTS: We show that MET is highly expressed and located at the plasma membrane of pancreatic cancer cells. We found that TR1801-ADC induces a specific cytotoxicity in pancreatic cancer cell lines and a profound tumor growth inhibition, even in a gemcitabine-resistant tumor. We also noted synergism between TR1801-ADC and gemcitabine in vitro and an improved response to the combination in vivo. CONCLUSIONS: Together, these results suggest the promise of agents such as TR1801-ADC as a novel approach to the treatment of pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Imunoconjugados/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/imunologia , Animais , Carcinoma Ductal Pancreático/mortalidade , Linhagem Celular Tumoral , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Camundongos , Neoplasias Pancreáticas/mortalidade , Proteínas Proto-Oncogênicas c-met/análise , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA