RESUMO
Herpes simplex encephalitis (HSE) is an acute form of encephalitis that can lead to poor neurological outcomes. Although the exact pathogenesis of HSE remains elusive, recent reports suggest a significant role for postinfectious immune-inflammatory processes in the central nervous system (CNS). This study aimed to clarify the association between CNS autoimmune responses and clinical presentation in patients with HSE, focusing on cerebrospinal fluid (CSF) characteristics, particularly the IgG index. We retrospectively analyzed 176 consecutive patients suspected of having aseptic meningitis /encephalitis for chronological changes in CSF findings and clinical presentations. These patients underwent PCR screening for herpesviruses (HV) in their CSF. We identified seven patients positive for herpes simplex virus type 1 (HSV-1), 20 patients positive for varicella-zoster virus, and 17 patients who met the criteria for aseptic meningitis but were PCR-negative for HV. Patients in the HSV-1-positive group exhibited a significant increase in the IgG index at the time of PCR-negative conversion compared with on admission (p = 0.0156), while such a change was not observed in the other two groups. Additionally, all patients in the HSV-1-positive group tested negative for anti-neural autoantibodies in CSF and serum samples collected approximately 3 weeks after onset. This study, therefore, highlights that CSF IgG index elevation occurs even after PCR-confirmed HSV-1 clearance, which might indicate immunopathogenesis that is independent of antibody-mediated mechanisms.
Assuntos
Anticorpos Antivirais , Encefalite por Herpes Simples , Herpesvirus Humano 1 , Imunoglobulina G , Humanos , Imunoglobulina G/líquido cefalorraquidiano , Imunoglobulina G/sangue , Feminino , Masculino , Encefalite por Herpes Simples/líquido cefalorraquidiano , Encefalite por Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Estudos Retrospectivos , Pessoa de Meia-Idade , Adulto , Idoso , Anticorpos Antivirais/líquido cefalorraquidiano , Anticorpos Antivirais/sangue , Adulto Jovem , Adolescente , Herpesvirus Humano 3/imunologia , Reação em Cadeia da Polimerase , Autoanticorpos/líquido cefalorraquidiano , Autoanticorpos/sangue , Idoso de 80 Anos ou mais , Criança , Líquido Cefalorraquidiano/virologia , Líquido Cefalorraquidiano/imunologiaRESUMO
OBJECTIVE: Individuals with Dravet syndrome (DS) exhibit progressive gait disturbance. No quantitative studies have been conducted to evaluate the effectiveness of medication for gait disturbance. Therefore, the aim of this study was to evaluate the effectiveness of levodopa for pathological gait in people with DS using three-dimensional gait analysis (3DGA). METHODS: Nine individuals with DS, ages 6-20 years, participated in a crossover study of levodopa and were randomly assigned to the levodopa precedence or no levodopa precedence group. Levodopa/carbidopa hydrate was prescribed at a dose of 5 mg/kg/day (body weight <60 kg) or 300 mg/day (body weight ≥60 kg). The medication was taken for 4-6 weeks (4-week washout period). 3DGA was performed three times before the study, with and without levodopa. A mixed-effects model was used to evaluate the effectiveness of levodopa. The primary outcome was the change in the Gait Deviation Index (GDI). In addition, spatiotemporal gait parameters, 6-minute walking distance (6MD), and balance were evaluated. The correlation between the effectiveness of levodopa and age or gait performance before starting levodopa was analyzed. RESULTS: Levodopa improved the GDI by 4.2 points, (p = .029), 6MD by 52 m (p = .002), and balance test result by 4.1 mm (p = .011) in participants with DS. No severe adverse events were observed, with the exception of one participant, who exhibited fever and consequently stopped taking levodopa. Levodopa was more effective in younger participants with a higher baseline gait performance. SIGNIFICANCE: Our randomized crossover trial showed that levodopa has the potential to improve gait disturbance in people with DS.
Assuntos
Estudos Cross-Over , Epilepsias Mioclônicas , Transtornos Neurológicos da Marcha , Levodopa , Humanos , Levodopa/uso terapêutico , Masculino , Feminino , Adolescente , Adulto Jovem , Criança , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/etiologia , Epilepsias Mioclônicas/tratamento farmacológico , Análise da Marcha , Resultado do Tratamento , Carbidopa/uso terapêutico , Marcha/efeitos dos fármacos , Combinação de MedicamentosRESUMO
BACKGROUND AND PURPOSE: Multiple system atrophy (MSA) is a neurodegenerative disease with characteristic motor and autonomic symptoms. Impaired brain serotonergic innervation can be associated with various clinical indices of MSA; however, the relationship between clinical symptoms and cerebrospinal fluid (CSF) levels of 5-hydroxyindole acetic acid (5-HIAA), a main serotonin metabolite, has not been fully elucidated. METHODS: To compare CSF 5-HIAA levels between patients with MSA and healthy controls, we included 33 controls and 69 MSA patients with either predominant parkinsonian or cerebellar ataxia subtypes. CSF 5-HIAA levels were measured using high-performance liquid chromatography. Additionally, we investigated correlations between CSF 5-HIAA and various clinical indices in 34 MSA patients. RESULTS: CSF 5-HIAA levels were significantly lower in MSA patients than in controls (p < 0.0001). Probable MSA patients had lower CSF 5-HIAA levels than possible MSA patients (p < 0.001). In MSA patients, CSF 5-HIAA levels were inversely correlated with scores in Parts 1, 2, and 4 of the Unified Multiple System Atrophy Rating Scale, and with systolic and diastolic blood pressure in Part 3. Structural equation modeling revealed significant paths between serotonin and clinical symptoms, and significance was highest for activities of daily living, walking, and body sway. CONCLUSIONS: Serotonin dysfunction, as assessed by CSF 5-HIAA levels, may implicate greater MSA severity.
Assuntos
Ataxia Cerebelar , Atrofia de Múltiplos Sistemas , Humanos , Serotonina , Ácido Hidroxi-Indolacético/líquido cefalorraquidiano , Atividades CotidianasRESUMO
BACKGROUND: Despite the suggestion that direct compression by granuloma and ischemia resulting from vasculitis can cause nerve fiber damage, the mechanisms underlying sarcoid neuropathy have not yet been fully clarified. METHODS: We examined the clinicopathological features of sarcoid neuropathy by focusing on electrophysiological and histopathological findings of sural nerve biopsy specimens. We included 18 patients with sarcoid neuropathy who had non-caseating epithelioid cell granuloma in their sural nerve biopsy specimens. RESULTS: Although electrophysiological findings suggestive of axonal neuropathy were observed, particularly in the lower limbs, all but three patients showed ≥1 abnormalities in nerve conduction velocity or distal motor latency. Additionally, a conduction block was observed in 11 of the 16 patients for whom waveforms were assessed; five of them fulfilled motor nerve conduction criteria strongly supportive of demyelination as defined in the European Academy of Neurology/Peripheral Nerve Society (EAN/PNS) guideline for chronic inflammatory demyelinating polyneuropathy (CIDP). In most patients, sural nerve biopsy specimens revealed a mild to moderate degree of myelinated fiber loss. Fibrinoid necrosis was observed in one patient, and electron microscopy analysis revealed demyelinated axons close to granulomas in six patients. CONCLUSIONS: Patients with sarcoid neuropathy may meet the EAN/PNS electrophysiological criteria for CIDP due to the frequent presence of conduction blocks. Based on our results, in addition to the ischemic damage resulting from granulomatous inflammation, demyelination may play an important role in the mechanism underlying sarcoid neuropathy.
Assuntos
Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Vasculite , Humanos , Nervos Periféricos/patologia , Granuloma/patologia , Condução Nervosa/fisiologia , Vasculite/patologia , Nervo Sural/patologiaRESUMO
PURPOSE: Due to the indistinguishable clinical features of corticobasal syndrome (CBS), the antemortem differentiation between corticobasal degeneration (CBD) and its mimics remains challenging. However, the utility of conventional magnetic resonance imaging (MRI) for the diagnosis of CBD has not been sufficiently evaluated. This study aimed to investigate the diagnostic performance of conventional MRI findings in differentiating pathologically confirmed CBD from its mimics. METHODS: Semiquantitative visual rating scales were employed to assess the degree and distribution of atrophy and asymmetry on conventional T1-weighted and T2-weighted images. Additionally, subcortical white matter hyperintensity (SWMH) on fluid-attenuated inversion recovery images were visually evaluated. RESULTS: In addition to 19 patients with CBD, 16 with CBD mimics (progressive supranuclear palsy (PSP): 9, Alzheimer's disease (AD): 4, dementia with Lewy bodies (DLB): 1, frontotemporal lobar degeneration with TAR DNA-binding protein of 43 kDa(FTLD-TDP): 1, and globular glial tauopathy (GGT): 1) were investigated. Compared with the CBD group, the PSP-CBS subgroup showed severe midbrain atrophy without SWMH. The non-PSP-CBS subgroup, comprising patients with AD, DLB, FTLD-TDP, and GGT, showed severe temporal atrophy with widespread asymmetry, especially in the temporal lobes. In addition to over half of the patients with CBD, two with FTLD-TDP and GGT showed SWMH, respectively. CONCLUSION: This study elucidates the distinct structural changes between the CBD and its mimics based on visual rating scales. The evaluation of atrophic distribution and SWMH may serve as imaging biomarkers of conventional MRI for detecting background pathologies.
Assuntos
Degeneração Corticobasal , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Idoso , Diagnóstico Diferencial , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Degeneração Corticobasal/diagnóstico por imagem , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/patologia , Pessoa de Meia-Idade , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Idoso de 80 Anos ou mais , Atrofia , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/patologiaRESUMO
The core pathological event in Parkinson's disease (PD) is the specific dying of dopamine (DA) neurons of the substantia nigra pars compacta (SNc). The reasons why SNc DA neurons are especially vulnerable and why idiopathic PD has only been found in humans are still puzzling. The two main underlying factors of SNc DA neuron vulnerability appear related to high DA production, namely (i) the toxic effects of cytoplasmic DA metabolism and (ii) continuous cytosolic Ca2+ oscillations in the absence of the Ca2+-buffer protein calbindin. Both factors cause oxidative stress by producing highly reactive quinones and increasing intra-mitochondrial Ca2+ concentrations, respectively. High DA expression in human SNc DA neuron cell bodies is suggested by the abundant presence of the DA-derived pigment neuromelanin, which is not found in such abundance in other species and has been associated with toxicity at higher levels. The oxidative stress created by their DA production system, despite the fact that the SN does not use unusually high amounts of energy, explains why SNc DA neurons are sensitive to various genetic and environmental factors that create mitochondrial damage and thereby promote PD. Aging increases multiple risk factors for PD, and, to a large extent, PD is accelerated aging. To prevent PD neurodegeneration, possible approaches that are discussed here are (1) reducing cytoplasmic DA accumulation, (2) blocking cytoplasmic Ca2+ oscillations, and (3) providing bioenergetic support.
Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Substância Negra/metabolismo , Neurônios Dopaminérgicos/metabolismo , Estresse Oxidativo/fisiologia , Metabolismo EnergéticoRESUMO
In patients with Parkinson's disease (PD), dopamine replacement therapy with dopamine D2/D3 receptor agonists induces impairments in decision-making, including pathological gambling. The neurobiological mechanisms underlying these adverse effects remain elusive. Here, in a mouse model of PD, we investigated the effects of the dopamine D3 receptor (D3R)-preferring agonist pramipexole (PPX) on decision-making. PD model mice were generated using a bilateral injection of the toxin 6-hydroxydopamine into the dorsolateral striatum. Subsequent treatment with PPX increased disadvantageous choices characterized by a high-risk/high-reward in the touchscreen-based Iowa Gambling Task. This effect was blocked by treatment with the selective D3R antagonist PG-01037. In model mice treated with PPX, the number of c-Fos-positive cells was increased in the external globus pallidus (GPe), indicating dysregulation of the indirect pathway in the corticothalamic-basal ganglia circuitry. In accordance, chemogenetic inhibition of the GPe restored normal c-Fos activation and rescued PPX-induced disadvantageous choices. These findings demonstrate that the hyperactivation of GPe neurons in the indirect pathway impairs decision-making in PD model mice. The results provide a candidate mechanism and therapeutic target for pathological gambling observed during D2/D3 receptor pharmacotherapy in PD patients.
Assuntos
Tomada de Decisões , Modelos Animais de Doenças , Globo Pálido , Doença de Parkinson , Pramipexol , Receptores de Dopamina D3 , Animais , Pramipexol/farmacologia , Camundongos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Tomada de Decisões/efeitos dos fármacos , Globo Pálido/metabolismo , Globo Pálido/efeitos dos fármacos , Masculino , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D3/agonistas , Agonistas de Dopamina/farmacologia , Benzotiazóis/farmacologia , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/metabolismoRESUMO
BACKGROUND: Several genetic factors are associated with the pathogenesis of sporadic amyotrophic lateral sclerosis (ALS) and its phenotypes, such as disease progression. Here, in this study, we aimed to identify the genes that affect the survival of patients with sporadic ALS. METHODS: We enrolled 1076 Japanese patients with sporadic ALS with imputed genotype data of 7 908 526 variants. We used Cox proportional hazards regression analysis with an additive model adjusted for sex, age at onset and the first two principal components calculated from genotyped data to conduct a genome-wide association study. We further analysed messenger RNA (mRNA) and phenotype expression in motor neurons derived from induced pluripotent stem cells (iPSC-MNs) of patients with ALS. RESULTS: Three novel loci were significantly associated with the survival of patients with sporadic ALS-FGF1 at 5q31.3 (rs11738209, HR=2.36 (95% CI, 1.77 to 3.15), p=4.85×10-9), THSD7A at 7p21.3 (rs2354952, 1.38 (95% CI, 1.24 to 1.55), p=1.61×10-8) and LRP1 at 12q13.3 (rs60565245, 2.18 (95% CI, 1.66 to 2.86), p=2.35×10-8). FGF1 and THSD7A variants were associated with decreased mRNA expression of each gene in iPSC-MNs and reduced in vitro survival of iPSC-MNs obtained from patients with ALS. The iPSC-MN in vitro survival was reduced when the expression of FGF1 and THSD7A was partially disrupted. The rs60565245 was not associated with LRP1 mRNA expression. CONCLUSIONS: We identified three loci associated with the survival of patients with sporadic ALS, decreased mRNA expression of FGF1 and THSD7A and the viability of iPSC-MNs from patients. The iPSC-MN model reflects the association between patient prognosis and genotype and can contribute to target screening and validation for therapeutic intervention.
Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Humanos , Esclerose Lateral Amiotrófica/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Estudo de Associação Genômica Ampla , População do Leste Asiático , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Neurônios Motores/patologiaRESUMO
The dark pigment neuromelanin (NM) is abundant in cell bodies of dopamine (DA) neurons in the substantia nigra (SN) and norepinephrine (NE) neurons in the locus coeruleus (LC) in the human brain. During the progression of Parkinson's disease (PD), together with the degeneration of the respective catecholamine (CA) neurons, the NM levels in the SN and LC markedly decrease. However, questions remain among others on how NM is associated with PD and how it is synthesized. The biosynthesis pathway of NM in the human brain has been controversial because the presence of tyrosinase in CA neurons in the SN and LC has been elusive. We propose the following NM synthesis pathway in these CA neurons: (1) Tyrosine is converted by tyrosine hydroxylase (TH) to L-3,4-dihydroxyphenylalanine (L-DOPA), which is converted by aromatic L-amino acid decarboxylase to DA, which in LC neurons is converted by dopamine ß-hydroxylase to NE; (2) DA or NE is autoxidized to dopamine quinone (DAQ) or norepinephrine quinone (NEQ); and (3) DAQ or NEQ is converted to eumelanic NM (euNM) and pheomelanic NM (pheoNM) in the absence and presence of cysteine, respectively. This process involves proteins as cysteine source and iron. We also discuss whether the NM amounts per neuromelanin-positive (NM+) CA neuron are higher in PD brain, whether NM quantitatively correlates with neurodegeneration, and whether an active lifestyle may reduce NM formation.
Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Cisteína/metabolismo , Melaninas/metabolismo , Catecolaminas/metabolismo , Norepinefrina/metabolismo , Substância Negra/metabolismo , Neurônios Dopaminérgicos/metabolismoRESUMO
BACKGROUND: No studies have examined the associations between adult height and ischemic stroke subtypes. METHODS: We conducted a population-based case-control study that included 2,451 thrombotic and 687 embolic stroke cases, as well as 1,623 intracerebral and 768 subarachnoid hemorrhage cases without history of stroke aged 40-79 years, and the same number of sex- and age-matched controls. Cases and controls were grouped according to the quintile cut-off values of height in controls, and the third quintile, which was approximately the average height group, was used as the reference group. Height divided by one standard deviation of height in controls was also examined as a continuous variable. The analyses were carried out separately for participants aged 40-59 years and 60-79 years. RESULTS: In both younger and older men, height was linearly inversely associated with total and thrombotic strokes, and the shortest quintile compared to the reference group was associated with increased risks of these strokes. Although height was linearly inversely associated with embolic stroke and intracerebral hemorrhage in younger men, the shortest quintile did not show increased risks of these strokes. Height did not seem to be associated with total stroke and any stroke subtypes in younger women. In contrast, the tallest quintile was significantly associated with increased risks of total stroke and intracerebral hemorrhage, and height tended to be positively associated with these strokes in older women. CONCLUSION: We reported the associations between adult height and ischemic stroke subtypes for the first time, which differed according to sex and age group.
Assuntos
AVC Embólico , AVC Isquêmico , Acidente Vascular Cerebral , Masculino , Adulto , Humanos , Feminino , Idoso , Incidência , AVC Embólico/complicações , Estudos de Casos e Controles , População do Leste Asiático , Japão/epidemiologia , Acidente Vascular Cerebral/epidemiologia , Hemorragia Cerebral/epidemiologia , Hemorragia Cerebral/complicações , AVC Isquêmico/complicações , Fatores de RiscoRESUMO
Accumulating evidence from anatomical and neuroimaging studies suggests that the cerebellum is engaged in a variety of motor and cognitive tasks. Given its various functions, a key question is whether the cerebellum also plays an important role in the brain's integrative functions. Here, we hypothesize the existence of connector regions, also known as connector hubs, where multiple resting state networks converged in the cerebellum. To verify this, we employed a recently developed voxel-level network measure called functional connectivity overlap ratio (FCOR), which could be used to quantify the spatial extent of a region's connection to several large-scale cortical networks. Using resting state functional MRI data from 101 healthy participants, cerebellar FCOR maps were constructed and used to identify the locations of connector hubs in the cerebellum. Results showed that a number of cerebellar regions exhibited strong connectivity with multiple functional networks, verifying our hypothesis. These highly connected regions were located in the posterior cerebellum, especially in lobules VI, VII, and IX, and mainly connected to the core neurocognitive networks such as default mode and executive control networks. Regions associated with the sensorimotor network were also localized in lobule V, VI, and VIII, albeit in small clusters. These cerebellar connector hubs may play an essential role in the processing of information across the core neurocognitive networks.
Assuntos
Cerebelo , Imageamento por Ressonância Magnética , Cerebelo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais , NeuroimagemRESUMO
The full spectrum of human herpesviruses (HHV)-associated neuroinfectious diseases in immunocompetent adults remains unclear. Hence, we sought to elucidate the epidemiology and clinical features of these diseases. The study subjects were patients over 16 years old suspected of neuroinfectious diseases who underwent spinal tap performed by neurologists in our university hospital between April 2013 and March 2018. The presence of seven HHV DNAs in cerebrospinal fluid (CSF) was determined by real-time PCR. HHV DNAs were detected in 33 (10.2%) of the 322 patients. The most frequently detected herpesvirus was varicella zoster virus (VZV) (19 patients), followed by HHV-6 (four patients), herpes simplex virus (HSV)-1 (three patients), HSV-2 (three patients), and Epstein-Barr virus (two patients). HHV DNAs were detected in CSF collected from patients with various neuroinfectious diseases, including myelitis, peripheral neuritis, encephalitis, and meningitis. All patients with HSV-1 DNA had encephalitis, whereas all patients with HSV-2 DNA had meningitis. Eleven of the 19 patients with VZV DNA had meningitis. Patients with VZV-associated encephalitis (median age, 80 years) were significantly older than non-encephalitis patients (median age, 60.5 years) (P = 0.046). Although post-herpetic neuralgia was observed in seven (54%) of the 13 patients with VZV and without encephalitis, no such neurological sequela was observed in the four encephalitis patients. In conclusion, HHVs were associated with approximately 10% of neuroinfectious diseases in this cohort. VZV was the most common pathogen, probably due to the large number of VZV meningitis patients. In addition, patients with VZV-associated meningitis were significantly younger than patients with VZV-associated encephalitis.
Assuntos
Encefalite , Infecções por Vírus Epstein-Barr , Infecções por Herpesviridae , Herpesvirus Humano 1 , Adolescente , Adulto , Idoso de 80 Anos ou mais , DNA Viral/líquido cefalorraquidiano , Herpesvirus Humano 1/genética , Herpesvirus Humano 2/genética , Herpesvirus Humano 3/genética , Herpesvirus Humano 4 , Humanos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo RealRESUMO
BACKGROUND AND PURPOSE: To clarify the relationship between fiber-specific white matter changes in amyotrophic lateral sclerosis (ALS) and clinical signs of upper motor neuron (UMN) involvement, we performed a fixel-based analysis (FBA), a novel framework for diffusion-weighted imaging analysis. METHODS: We enrolled 96 participants, including 48 nonfamilial ALS patients and 48 age- and sex-matched healthy controls (HCs), in this study and conducted whole-brain FBA and voxel-based morphometry analysis. We compared the fiber density (FD), fiber morphology (fiber cross-section [FC]), and a combined index of FD and FC (FDC) between the ALS and HC groups. We performed a tract-of-interest analysis to extract FD values across the significant regions in the whole-brain analysis. Then, we evaluated the associations between FD values and clinical variables. RESULTS: The bilateral corticospinal tracts (CSTs) and the corpus callosum (CC) showed reduced FD and FDC in ALS patients compared with HCs (p < 0.05, familywise error-corrected), and the comparison of FCs revealed no region that was significantly different from another. Voxel-based morphometry showed cortical volume reduction in the regions, including the primary motor area. Clinical scores showed correlations with FD values in the CSTs (UMN score: rho = -0.530, p < 0.001; central motor conduction time [CMCT] in the upper limb: rho = -0.474, p = 0.008; disease duration: rho = -0.383, p = 0.007; ALS Functional Rating Scale-Revised: rho = 0.340, p = 0.018). In addition, patients whose CMCT was not calculated due to unevoked waves also showed FD reduction in the CSTs. CONCLUSIONS: Our findings suggest that FD values in the CST estimated via FBA can be potentially used in evaluating UMN impairments.
Assuntos
Esclerose Lateral Amiotrófica , Substância Branca , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Neurônios Motores , Tratos Piramidais/diagnóstico por imagem , Substância Branca/diagnóstico por imagemRESUMO
Parkinson's disease (PD) is an aging-related disease and the second most common neurodegenerative disease after Alzheimer's disease. The main symptoms of PD are movement disorders accompanied with deficiency of neurotransmitter dopamine (DA) in the striatum due to cell death of the nigrostriatal DA neurons. Two main histopathological hallmarks exist in PD: cytosolic inclusion bodies termed Lewy bodies that mainly consist of α-synuclein protein, the oligomers of which produced by misfolding are regarded to be neurotoxic, causing DA cell death; and black pigments termed neuromelanin (NM) that are contained in DA neurons and markedly decrease in PD. The synthesis of human NM is regarded to be similar to that of melanin in melanocytes; melanin synthesis in skin is via DOPAquinone (DQ) by tyrosinase, whereas NM synthesis in DA neurons is via DAquinone (DAQ) by tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC). DA in cytoplasm is highly reactive and is assumed to be oxidized spontaneously or by an unidentified tyrosinase to DAQ and then, synthesized to NM. Intracellular NM accumulation above a specific threshold has been reported to be associated with DA neuron death and PD phenotypes. This review reports recent progress in the biosynthesis and pathophysiology of NM in PD.
Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Dopamina/metabolismo , Humanos , Melaninas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
Fused in sarcoma (FUS) is genetically and clinicopathologically linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). We have previously reported that intranuclear interactions of FUS and splicing factor, proline- and glutamine-rich (SFPQ) contribute to neuronal homeostasis. Disruption of the FUS-SFPQ interaction leads to an increase in the ratio of 4-repeat tau (4R-tau)/3-repeat tau (3R-tau), which manifests in FTLD-like phenotypes in mice. Here, we examined FUS-SFPQ interactions in 142 autopsied individuals with FUS-related ALS/FTLD (ALS/FTLD-FUS), TDP-43-related ALS/FTLD (ALS/FTLD-TDP), progressive supranuclear palsy, corticobasal degeneration, Alzheimer's disease, or Pick's disease as well as controls. Immunofluorescent imaging showed impaired intranuclear co-localization of FUS and SFPQ in neurons of ALS/FTLD-FUS, ALS/FTLD-TDP, progressive supranuclear palsy and corticobasal degeneration cases, but not in Alzheimer's disease or Pick's disease cases. Immunoprecipitation analyses of FUS and SFPQ revealed reduced interactions between the two proteins in ALS/FTLD-TDP and progressive supranuclear palsy cases, but not in those with Alzheimer disease. Furthermore, the ratio of 4R/3R-tau was elevated in cases with ALS/FTLD-TDP and progressive supranuclear palsy, but was largely unaffected in cases with Alzheimer disease. We concluded that impaired interactions between intranuclear FUS and SFPQ and the subsequent increase in the ratio of 4R/3R-tau constitute a common pathogenesis pathway in FTLD spectrum diseases.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Neurônios/metabolismo , Fator de Processamento Associado a PTB/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteinopatias TDP-43/metabolismo , Idoso , Esclerose Lateral Amiotrófica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Degeneração Lobar Frontotemporal/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/patologia , Proteinopatias TDP-43/patologia , Proteínas tau/metabolismoRESUMO
Clioquinol has been implicated as a causative agent for subacute myelo-optico-neuropathy (SMON) in humans, although the mechanism remains to be elucidated. In this study, we utilized astrocyte-derived cell line, KT-5 cells to explore its potential cytotoxicity on glial cells. KT-5 cells were exposed in vitro to a maximum of 50 µM clioquinol for up to 24 h. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenylte trazolium bromide (MTT) assay of the cells revealed that clioquinol induced significant cell damage and death. We also found that clioquinol caused accumulation of microtubule-associated protein light chain-3 (LC3)-II and sequestosome-1 (p62) in a dose- and time-dependent manner, suggesting the abnormality of autophagy-lysosome pathway. Consistent with these findings, an exposure of 20 µM clioquinol induced the accumulation of cellular autophagic vacuoles. Moreover, an exposure of 20 µM clioquinol provoked a statistically significant reduction of intracellular lysosomal acid hydrolases activities but no change in lysosomal pH. It also resulted in a significant decline of intracellular ATP levels, enhanced cellular levels of reactive oxygen species, and eventually cell death. This cell death at least did not appear to occur via apoptosis. 10 µM Chloroquine, lysosomal inhibitor, blocked the autophagic degradation and augmented clioquinol-cytotoxicity, whereas rapamycin, an inducer of autophagy, rescued clioquinol-induced cytotoxicity. Thus, our present results strongly suggest clioquinol acts as a potentially cytotoxic agent to glial cells. For future clinical application of clioquinol on the treatment of neurological and cancer disorders, we should take account of this type of cell death mechanism.
Assuntos
Astrócitos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Clioquinol/toxicidade , Lisossomos/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Sequestossoma-1/metabolismo , Trifosfato de Adenosina/metabolismo , Apoptose , Astrócitos/metabolismo , Linhagem Celular , Cloroquina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Neuroglia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fatores de TempoRESUMO
Neuroimaging studies have shown that the brain is functionally organized into several large-scale brain networks. Within these networks are regions that are widely connected to several other regions within and/or outside the network. Regions that connect to several other networks, known as connector hubs, are believed to be crucial for information transfer and between-network communication within the brain. To identify regions with high between-network connectivity at the voxel level, we introduced a novel metric called functional connectivity overlap ratio (FCOR), which quantifies the spatial extent of a region's connection to a given network. Using resting state functional magnetic resonance imaging data, FCOR maps were generated for several well-known large-scale resting state networks (RSNs) and used to examine the relevant associations among different RSNs, identify connector hub regions in the cerebral cortex, and elucidate the hierarchical functional organization of the brain. Constructed FCOR maps revealed a strong association among the core neurocognitive networks (default mode, salience, and executive control) as well as among primary processing networks (sensorimotor, auditory, and visual). Prominent connector hubs were identified in the bilateral middle frontal gyrus, posterior cingulate, lateral parietal, middle temporal, dorsal anterior cingulate, and anterior insula, among others, regions mostly associated with the core neurocognitive networks. Finally, clustering the whole brain using FCOR features yielded a topological organization that arranges brain regions into a hierarchy of information processing systems with the primary processing systems at one end and the heteromodal systems comprising connector hubs at the other end.
Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Adulto , Córtex Cerebral/fisiologia , Função Executiva , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto JovemRESUMO
White matter (WM) fiber bundles change dynamically with age. These changes could be driven by alterations in axonal diameter, axonal density, and myelin content. In this study, we applied a novel fixel-based analysis (FBA) framework to examine these changes throughout the adult lifespan. Using diffusion-weighted images from a cohort of 293 healthy volunteers (89 males/204 females) from ages 21 to 86 years old, we performed FBA to analyze age-related changes in microscopic fiber density (FD) and macroscopic fiber morphology (fiber cross section [FC]). Our results showed significant and widespread age-related alterations in FD and FC across the whole brain. Interestingly, some fiber bundles such as the anterior thalamic radiation, corpus callosum, and superior longitudinal fasciculus only showed significant negative relationship with age in FD values, but not in FC. On the other hand, some segments of the cerebello-thalamo-cortical pathway only showed significant negative relationship with age in FC, but not in FD. Analysis at the tract-level also showed that major fiber tract groups predominantly distributed in the frontal lobe (cingulum, forceps minor) exhibited greater vulnerability to the aging process than the others. Differences in FC and the combined measure of FD and cross section values observed between sexes were mostly driven by differences in brain sizes although male participants tended to exhibit steeper negative linear relationship with age in FD as compared to female participants. Overall, these findings provide further insights into the structural changes the brain's WM undergoes due to the aging process.
Assuntos
Envelhecimento/fisiologia , Imagem de Difusão por Ressonância Magnética , Desenvolvimento Humano/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Substância Branca/anatomia & histologia , Substância Branca/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Fatores Sexuais , Substância Branca/diagnóstico por imagem , Adulto JovemRESUMO
Cognitive deficits in Parkinson's disease (PD) are heterogeneous entities, and the cognitive status fluctuates over time. However, individual changes in longitudinal cognitive performance in PD are not fully understood. We evaluated three visual indices (visuoperception, visuoconstruction, and visuospatial ability) and four cognitive domains (attention/working memory, executive function, memory, and language) at baseline (Time1) and at 1-year follow-up (Time2) in 36 patients with PD and 32 healthy controls (HCs). To explore the magnitude and frequency of cognitive changes, we analyzed data using the simple difference method and the standardized regression-based method. We also explored the correlations between changes in test scores and several clinical predictors, using logistic regression analysis. At 1 year, patients with PD showed higher rates of change in scores on several cognitive tests, especially the Incomplete Letters test of visuoperception, compared to HCs. After adjusting for demographic variables, the visuoperceptual change was 61.1% overall, with the largest effect size. The changes in scores of visuoperception correlated with those of memory (r = 0.672, p < 0.001), language (r = 0.389, p < 0.05), and visuospatial ability (r = 0.379, p < 0.05). The severity of olfactory disturbance, the MDS-UPDRS Part I score, and younger PD onset predicted the significant changes observed in the Incomplete Letters test scores. Visuoperception changed more in non-demented PD patients than in HCs at 1-year follow-up. The changes in visuoperception could relate to involvement of the ventral occipitotemporal pathway, the more widespread temporal lobe, and brain reserve in PD.
Assuntos
Disfunção Cognitiva , Doença de Parkinson , Função Executiva , Seguimentos , Humanos , Testes Neuropsicológicos , Doença de Parkinson/complicaçõesRESUMO
We aimed to elucidate the effect of cerebellar degeneration in relation to cognition in multiple system atrophy (MSA). Thirty-two patients diagnosed with probable MSA and 32 age- and gender-matched healthy controls (HCs) were enrolled. We conducted voxel-based morphometry (VBM) for anatomical images and independent component analysis (ICA), dual-regression analysis, and seed-based analysis for functional images with voxel-wise gray matter correction. In the MSA group, a widespread cerebellar volume loss was observed. ICA and dual-regression analysis showed lower functional connectivity (FC) in the left executive control and salience networks in regions located in the cerebellum. Seed-based analysis using the identified cerebellar regions as seeds showed extensive disruptions in cerebello-cerebral networks. Global cognitive scores correlated with the FC values between the right lobules VI/crus I and the medial prefrontal/anterior cingulate cortices and between the same region and the amygdala/parahippocampal gyrus. Our study indicates that cerebellar degeneration in MSA causes segregation of cerebellar-cerebral networks. Furthermore, the cognitive deficits in MSA may be driven by decreased cerebello-prefrontal and cerebello-amygdaloid functional connections.