Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 78(8): 2028-2036, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37358190

RESUMO

BACKGROUND: Urinary tract infections (UTIs) are a frequent cause for visits to primary care providers. In alignment globally, uropathogenic Escherichia coli (UPEC) are the main aetiological agent for UTIs in Norfolk and are increasingly difficult to treat due to multi-drug resistance. OBJECTIVES: We set out to identify which clonal groups and resistance genes are disseminating in the community and hospitals in Norfolk, the first study of its kind for UPEC in this region. METHODS: We collected 199 clinical E. coli isolates causing UTIs in the community and hospital from the Clinical Microbiology laboratory at Norfolk and Norwich University Hospital between August 2021 and January 2022. These were whole-genome sequenced using the Illumina and MinION platforms for in silico MLST and antibiotic resistance determinant detection. RESULTS: The isolates were composed of 70 STs; 8 lineages represented 56.7% of this population: ST73, ST12, ST69, ST131, ST404, ST95, ST127 and ST1193. Importantly, primary UTI screening deemed 6.5% of isolates to be multidrug resistant (MDR), with high rates of resistance to ampicillin (52.1%) and trimethoprim (36.2%) in hospitals. Of concern is the probable clonal expansion of MDR groups ST131 and ST1193 in hospitals and community settings with chromosomally encoded blaCTX-M-15, blaOXA-1 and aac(6')-Ib-cr5. CONCLUSIONS: The burden of reported UTIs in Norfolk is largely caused by non-MDR isolates and mirrors similar UPEC studies nationally and internationally. Continually monitoring samples with consideration of sources will help reduce burden of disease.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Escherichia coli Uropatogênica/genética , Tipagem de Sequências Multilocus , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Antibacterianos/farmacologia , Infecções Urinárias/epidemiologia , Infecções Urinárias/microbiologia , Reino Unido/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética
2.
Evol Lett ; 6(6): 426-437, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36579163

RESUMO

In addition to nucleotide variation, many bacteria also undergo changes at a much larger scale via rearrangement of their genome structure (GS) around long repeat sequences. These rearrangements result in genome fragments shifting position and/or orientation in the genome without necessarily affecting the underlying nucleotide sequence. To date, scalable techniques have not been applied to GS identification, so it remains unclear how extensive this variation is and the extent of its impact upon gene expression. However, the emergence of multiplexed, long-read sequencing overcomes the scale problem, as reads of several thousand bases are routinely produced that can span long repeat sequences to identify the flanking chromosomal DNA, allowing GS identification. Genome rearrangements were generated in Salmonella enterica serovar Typhi through long-term culture at ambient temperature. Colonies with rearrangements were identified via long-range PCR and subjected to long-read nanopore sequencing to confirm genome variation. Four rearrangements were investigated for differential gene expression using transcriptomics. All isolates with changes in genome arrangement relative to the parent strain were accompanied by changes in gene expression. Rearrangements with similar fragment movements demonstrated similar changes in gene expression. The most extreme rearrangement caused a large imbalance between the origin and terminus of replication and was associated with differential gene expression as a factor of distance moved toward or away from the origin of replication. Genome structure variation may provide a mechanism through which bacteria can quickly adapt to new environments and warrants routine assessment alongside traditional nucleotide-level measures of variation.

3.
Microb Genom ; 8(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36748517

RESUMO

Antimicrobial-resistance (AMR) genes can be transferred between microbial cells via horizontal gene transfer (HGT), which involves mobile and integrative elements such as plasmids, bacteriophages, transposons, integrons and pathogenicity islands. Bacteriophages are found in abundance in the microbial world, but their role in virulence and AMR has not fully been elucidated in the Enterobacterales. With short-read sequencing paving the way to systematic high-throughput AMR gene detection, long-read sequencing technologies now enable us to establish how such genes are structurally connected into meaningful genomic units, raising questions about how they might cooperate to achieve their biological function. Here, we describe a novel ~98 kbp circular P1-bacteriophage-like plasmid termed ph681355 isolated from a clinical Salmonella enterica serovar Typhi isolate. It carries bla CTX-M-15, an IncY plasmid replicon (repY gene) and the ISEcP1 mobile element and is, to our knowledge, the first reported P1-bacteriophage-like plasmid (phage-plasmid) in S. enterica Typhi. We compared ph681355 to two previously described phage-plasmids, pSJ46 from S. enterica serovar Indiana and pMCR-1-P3 from Escherichia coli, and found high nucleotide similarity across the backbone. However, we saw low ph681355 backbone similarity to plasmid p60006 associated with the extensively drug-resistant S. enterica Typhi outbreak isolate in Pakistan, providing evidence of an alternative route for bla CTX-M-15 transmission. Our discovery highlights the importance of utilizing long-read sequencing in interrogating bacterial genomic architecture to fully understand AMR mechanisms and their clinical relevance. It also raises questions regarding how widespread bacteriophage-mediated HGT might be, suggesting that the resulting genomic plasticity might be higher than previously thought.


Assuntos
Bacteriófagos , Salmonella typhi , Salmonella typhi/genética , Bacteriófagos/genética , Bacteriófago P1/genética , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA