Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(7)2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30011930

RESUMO

An optimal camera placement problem is investigated. The objective is to maximize the area of the field of view (FoV) of a stitched video obtained by stitching video streams from an array of cameras. The positions and poses of these cameras are restricted to a given set of selections. The camera array is designed to be placed inside the abdomen to support minimally invasive laparoscopic surgery. Hence, a few non-traditional requirements/constraints are imposed: Adjacent views are required to overlap to support image registration for seamless video stitching. The resulting effective FoV should be a contiguous region without any holes and should be a convex polygon. With these requirements, traditional camera placement algorithms cannot be directly applied to solve this problem. In this work, we show the complexity of this problem grows exponentially as a function of the problem size, and then present a greedy polynomial time heuristic solution that approximates well to the globally optimal solution. We present a new approach to directly evaluate the combined coverage area (area of FoV) as the union of a set of quadrilaterals. We also propose a graph-based approach to ensure the stitching requirement (overlap between adjacent views) is satisfied. We present a method to find a convex polygon with maximum area from a given polygon. Several design examples show that the proposed algorithm can achieve larger FoV area while using much less computing time.

2.
J Signal Process Syst ; 94(3): 329-343, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35663585

RESUMO

A real-time 3D visualization (RT3DV) system using a multiview RGB camera array is presented. RT3DV can process multiple synchronized video streams to produce a stereo video of a dynamic scene from a chosen view angle. Its design objective is to facilitate 3D visualization at the video frame rate with good viewing quality. To facilitate 3D vision, RT3DV estimates and updates a surface mesh model formed directly from a set of sparse key points. The 3D coordinates of these key points are estimated from matching 2D key points across multiview video streams with the aid of epipolar geometry and trifocal tensor. To capture the scene dynamics, 2D key points in individual video streams are tracked between successive frames. We implemented a proof of concept RT3DV system tasked to process five synchronous video streams acquired by an RGB camera array. It achieves a processing speed of 44 milliseconds per frame and a peak signal to noise ratio (PSNR) of 15.9 dB from a viewpoint coinciding with a reference view. As a comparison, an image-based MVS algorithm utilizing a dense point cloud model and frame by frame feature detection and matching will require 7 seconds to render a frame and yield a reference view PSNR of 16.3 dB.

3.
Micromachines (Basel) ; 11(5)2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32397580

RESUMO

Existing laparoscopic surgery systems use a single laparoscope to visualize the surgical area with a limited field of view (FoV), necessitating maneuvering the laparoscope to search a target region. In some cases, the laparoscope needs to be moved from one surgical port to another one to detect target organs. These maneuvers would cause longer surgical time and degrade the efficiency of operation. We hypothesize that if an array of cameras can be deployed to provide a stitched video with an expanded FoV and small blind spots, the time required to perform multiple tasks at different sites can be significantly reduced. We developed a micro-camera array that can enlarge the FoV and reduce blind spots between the cameras by optimizing the angle of cameras. The video stream of this micro-camera array was designed to be processed in real-time to provide a stitched video with the expanded FoV. We mounted this micro-camera array to a Fundamentals of Laparoscopic Surgery (FLS) laparoscopic trainer box and designed an experiment to validate the hypothesis above. Surgeons, residents, and a medical student were recruited to perform a modified bean drop task, and the completion time was compared against that measured using a traditional single-camera laparoscope. It was observed that utilizing the micro-camera array, the completion time of the modified bean drop task was 203 ± 55 s while using the laparoscope, the completion time was 245 ± 114 s, with a p-value of 0.00097. It is also observed that the benefit of using an FoV-expanded camera array does not diminish for subjects who are more experienced. This test provides convincing evidence and validates the hypothesis that expanded FoV with small blind spots can reduce the operation time for laparoscopic surgical tasks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA